Loading…

Multiplayer battle game-inspired optimizer for complex optimization problems

Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mains...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing 2024-09, Vol.27 (6), p.8307-8331
Main Authors: Xu, Yuefeng, Zhong, Rui, Zhang, Chao, Yu, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83
cites cdi_FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83
container_end_page 8331
container_issue 6
container_start_page 8307
container_title Cluster computing
container_volume 27
creator Xu, Yuefeng
Zhong, Rui
Zhang, Chao
Yu, Jun
description Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mainstream multiplayer battle royale games into two discrete phases: movement and battle. Specifically, the movement phase incorporates the principles of commonly encountered “safe zones” to incentivize participants to relocate to areas with a higher survival potential. The battle phase simulates a range of strategies players adopt in various situations to enhance the diversity of the population. To evaluate and analyze the performance of the proposed MBGO, we executed it alongside ten other algorithms, including three classics and five latest ones, across multiple diverse dimensions within the CEC2017 and CEC2020 benchmark functions. In addition, we employed several industrial design problems to evaluate the scalability and practicality of the proposed MBGO. The statistical analysis results reveal that the novel MBGO demonstrates significant competitiveness, excelling in convergence speed and achieving high levels of convergence accuracy across both benchmark functions and real-world problems.
doi_str_mv 10.1007/s10586-024-04448-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100672475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100672475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwNOC5-jktckepagVKl70HLJpUrbsyySl1k9vdBVvnmaY-T_gh9AlgWsCIG8iAaFKDJRj4JwrvD9CMyIkw1Jwdpx3lt9SCXmKzmLcAkAlaTVDq6ddm5qxNQcXitqk1LpiYzqHmz6OTXDrYhhT0zUf-e2HUNihG1v3_ns1qRn6YgxD3bounqMTb9roLn7mHL3e370slnj1_PC4uF1hy0iVMBXMEkbAGsZoabgruVHUEwW1J35t185yVVnPrBBUeMHAE0Gk98BVTaxic3Q15ebit52LSW-HXehzpc6xUErKpcgqOqlsGGIMzusxNJ0JB01Af1HTEzWdqelvanqfTWwyxSzuNy78Rf_j-gTagHGH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100672475</pqid></control><display><type>article</type><title>Multiplayer battle game-inspired optimizer for complex optimization problems</title><source>Springer Nature</source><creator>Xu, Yuefeng ; Zhong, Rui ; Zhang, Chao ; Yu, Jun</creator><creatorcontrib>Xu, Yuefeng ; Zhong, Rui ; Zhang, Chao ; Yu, Jun</creatorcontrib><description>Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mainstream multiplayer battle royale games into two discrete phases: movement and battle. Specifically, the movement phase incorporates the principles of commonly encountered “safe zones” to incentivize participants to relocate to areas with a higher survival potential. The battle phase simulates a range of strategies players adopt in various situations to enhance the diversity of the population. To evaluate and analyze the performance of the proposed MBGO, we executed it alongside ten other algorithms, including three classics and five latest ones, across multiple diverse dimensions within the CEC2017 and CEC2020 benchmark functions. In addition, we employed several industrial design problems to evaluate the scalability and practicality of the proposed MBGO. The statistical analysis results reveal that the novel MBGO demonstrates significant competitiveness, excelling in convergence speed and achieving high levels of convergence accuracy across both benchmark functions and real-world problems.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04448-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Benchmarks ; Computer Communication Networks ; Computer Science ; Convergence ; Design engineering ; Exploitation ; Games ; Heuristic methods ; Linear programming ; Operating Systems ; Optimization algorithms ; Optimization techniques ; Performance evaluation ; Processor Architectures ; Researchers ; Statistical analysis</subject><ispartof>Cluster computing, 2024-09, Vol.27 (6), p.8307-8331</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83</citedby><cites>FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Yuefeng</creatorcontrib><creatorcontrib>Zhong, Rui</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><title>Multiplayer battle game-inspired optimizer for complex optimization problems</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mainstream multiplayer battle royale games into two discrete phases: movement and battle. Specifically, the movement phase incorporates the principles of commonly encountered “safe zones” to incentivize participants to relocate to areas with a higher survival potential. The battle phase simulates a range of strategies players adopt in various situations to enhance the diversity of the population. To evaluate and analyze the performance of the proposed MBGO, we executed it alongside ten other algorithms, including three classics and five latest ones, across multiple diverse dimensions within the CEC2017 and CEC2020 benchmark functions. In addition, we employed several industrial design problems to evaluate the scalability and practicality of the proposed MBGO. The statistical analysis results reveal that the novel MBGO demonstrates significant competitiveness, excelling in convergence speed and achieving high levels of convergence accuracy across both benchmark functions and real-world problems.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Exploitation</subject><subject>Games</subject><subject>Heuristic methods</subject><subject>Linear programming</subject><subject>Operating Systems</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Performance evaluation</subject><subject>Processor Architectures</subject><subject>Researchers</subject><subject>Statistical analysis</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKtfwNOC5-jktckepagVKl70HLJpUrbsyySl1k9vdBVvnmaY-T_gh9AlgWsCIG8iAaFKDJRj4JwrvD9CMyIkw1Jwdpx3lt9SCXmKzmLcAkAlaTVDq6ddm5qxNQcXitqk1LpiYzqHmz6OTXDrYhhT0zUf-e2HUNihG1v3_ns1qRn6YgxD3bounqMTb9roLn7mHL3e370slnj1_PC4uF1hy0iVMBXMEkbAGsZoabgruVHUEwW1J35t185yVVnPrBBUeMHAE0Gk98BVTaxic3Q15ebit52LSW-HXehzpc6xUErKpcgqOqlsGGIMzusxNJ0JB01Af1HTEzWdqelvanqfTWwyxSzuNy78Rf_j-gTagHGH</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Xu, Yuefeng</creator><creator>Zhong, Rui</creator><creator>Zhang, Chao</creator><creator>Yu, Jun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>Multiplayer battle game-inspired optimizer for complex optimization problems</title><author>Xu, Yuefeng ; Zhong, Rui ; Zhang, Chao ; Yu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Exploitation</topic><topic>Games</topic><topic>Heuristic methods</topic><topic>Linear programming</topic><topic>Operating Systems</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Performance evaluation</topic><topic>Processor Architectures</topic><topic>Researchers</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yuefeng</creatorcontrib><creatorcontrib>Zhong, Rui</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yuefeng</au><au>Zhong, Rui</au><au>Zhang, Chao</au><au>Yu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplayer battle game-inspired optimizer for complex optimization problems</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>27</volume><issue>6</issue><spage>8307</spage><epage>8331</epage><pages>8307-8331</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mainstream multiplayer battle royale games into two discrete phases: movement and battle. Specifically, the movement phase incorporates the principles of commonly encountered “safe zones” to incentivize participants to relocate to areas with a higher survival potential. The battle phase simulates a range of strategies players adopt in various situations to enhance the diversity of the population. To evaluate and analyze the performance of the proposed MBGO, we executed it alongside ten other algorithms, including three classics and five latest ones, across multiple diverse dimensions within the CEC2017 and CEC2020 benchmark functions. In addition, we employed several industrial design problems to evaluate the scalability and practicality of the proposed MBGO. The statistical analysis results reveal that the novel MBGO demonstrates significant competitiveness, excelling in convergence speed and achieving high levels of convergence accuracy across both benchmark functions and real-world problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04448-w</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2024-09, Vol.27 (6), p.8307-8331
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_3100672475
source Springer Nature
subjects Algorithms
Benchmarks
Computer Communication Networks
Computer Science
Convergence
Design engineering
Exploitation
Games
Heuristic methods
Linear programming
Operating Systems
Optimization algorithms
Optimization techniques
Performance evaluation
Processor Architectures
Researchers
Statistical analysis
title Multiplayer battle game-inspired optimizer for complex optimization problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplayer%20battle%20game-inspired%20optimizer%20for%20complex%20optimization%20problems&rft.jtitle=Cluster%20computing&rft.au=Xu,%20Yuefeng&rft.date=2024-09-01&rft.volume=27&rft.issue=6&rft.spage=8307&rft.epage=8331&rft.pages=8307-8331&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04448-w&rft_dat=%3Cproquest_cross%3E3100672475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100672475&rft_id=info:pmid/&rfr_iscdi=true