Loading…
Multiplayer battle game-inspired optimizer for complex optimization problems
Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mains...
Saved in:
Published in: | Cluster computing 2024-09, Vol.27 (6), p.8307-8331 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83 |
container_end_page | 8331 |
container_issue | 6 |
container_start_page | 8307 |
container_title | Cluster computing |
container_volume | 27 |
creator | Xu, Yuefeng Zhong, Rui Zhang, Chao Yu, Jun |
description | Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mainstream multiplayer battle royale games into two discrete phases: movement and battle. Specifically, the movement phase incorporates the principles of commonly encountered “safe zones” to incentivize participants to relocate to areas with a higher survival potential. The battle phase simulates a range of strategies players adopt in various situations to enhance the diversity of the population. To evaluate and analyze the performance of the proposed MBGO, we executed it alongside ten other algorithms, including three classics and five latest ones, across multiple diverse dimensions within the CEC2017 and CEC2020 benchmark functions. In addition, we employed several industrial design problems to evaluate the scalability and practicality of the proposed MBGO. The statistical analysis results reveal that the novel MBGO demonstrates significant competitiveness, excelling in convergence speed and achieving high levels of convergence accuracy across both benchmark functions and real-world problems. |
doi_str_mv | 10.1007/s10586-024-04448-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100672475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100672475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwNOC5-jktckepagVKl70HLJpUrbsyySl1k9vdBVvnmaY-T_gh9AlgWsCIG8iAaFKDJRj4JwrvD9CMyIkw1Jwdpx3lt9SCXmKzmLcAkAlaTVDq6ddm5qxNQcXitqk1LpiYzqHmz6OTXDrYhhT0zUf-e2HUNihG1v3_ns1qRn6YgxD3bounqMTb9roLn7mHL3e370slnj1_PC4uF1hy0iVMBXMEkbAGsZoabgruVHUEwW1J35t185yVVnPrBBUeMHAE0Gk98BVTaxic3Q15ebit52LSW-HXehzpc6xUErKpcgqOqlsGGIMzusxNJ0JB01Af1HTEzWdqelvanqfTWwyxSzuNy78Rf_j-gTagHGH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100672475</pqid></control><display><type>article</type><title>Multiplayer battle game-inspired optimizer for complex optimization problems</title><source>Springer Nature</source><creator>Xu, Yuefeng ; Zhong, Rui ; Zhang, Chao ; Yu, Jun</creator><creatorcontrib>Xu, Yuefeng ; Zhong, Rui ; Zhang, Chao ; Yu, Jun</creatorcontrib><description>Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mainstream multiplayer battle royale games into two discrete phases: movement and battle. Specifically, the movement phase incorporates the principles of commonly encountered “safe zones” to incentivize participants to relocate to areas with a higher survival potential. The battle phase simulates a range of strategies players adopt in various situations to enhance the diversity of the population. To evaluate and analyze the performance of the proposed MBGO, we executed it alongside ten other algorithms, including three classics and five latest ones, across multiple diverse dimensions within the CEC2017 and CEC2020 benchmark functions. In addition, we employed several industrial design problems to evaluate the scalability and practicality of the proposed MBGO. The statistical analysis results reveal that the novel MBGO demonstrates significant competitiveness, excelling in convergence speed and achieving high levels of convergence accuracy across both benchmark functions and real-world problems.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04448-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Benchmarks ; Computer Communication Networks ; Computer Science ; Convergence ; Design engineering ; Exploitation ; Games ; Heuristic methods ; Linear programming ; Operating Systems ; Optimization algorithms ; Optimization techniques ; Performance evaluation ; Processor Architectures ; Researchers ; Statistical analysis</subject><ispartof>Cluster computing, 2024-09, Vol.27 (6), p.8307-8331</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83</citedby><cites>FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Yuefeng</creatorcontrib><creatorcontrib>Zhong, Rui</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><title>Multiplayer battle game-inspired optimizer for complex optimization problems</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mainstream multiplayer battle royale games into two discrete phases: movement and battle. Specifically, the movement phase incorporates the principles of commonly encountered “safe zones” to incentivize participants to relocate to areas with a higher survival potential. The battle phase simulates a range of strategies players adopt in various situations to enhance the diversity of the population. To evaluate and analyze the performance of the proposed MBGO, we executed it alongside ten other algorithms, including three classics and five latest ones, across multiple diverse dimensions within the CEC2017 and CEC2020 benchmark functions. In addition, we employed several industrial design problems to evaluate the scalability and practicality of the proposed MBGO. The statistical analysis results reveal that the novel MBGO demonstrates significant competitiveness, excelling in convergence speed and achieving high levels of convergence accuracy across both benchmark functions and real-world problems.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Exploitation</subject><subject>Games</subject><subject>Heuristic methods</subject><subject>Linear programming</subject><subject>Operating Systems</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Performance evaluation</subject><subject>Processor Architectures</subject><subject>Researchers</subject><subject>Statistical analysis</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKtfwNOC5-jktckepagVKl70HLJpUrbsyySl1k9vdBVvnmaY-T_gh9AlgWsCIG8iAaFKDJRj4JwrvD9CMyIkw1Jwdpx3lt9SCXmKzmLcAkAlaTVDq6ddm5qxNQcXitqk1LpiYzqHmz6OTXDrYhhT0zUf-e2HUNihG1v3_ns1qRn6YgxD3bounqMTb9roLn7mHL3e370slnj1_PC4uF1hy0iVMBXMEkbAGsZoabgruVHUEwW1J35t185yVVnPrBBUeMHAE0Gk98BVTaxic3Q15ebit52LSW-HXehzpc6xUErKpcgqOqlsGGIMzusxNJ0JB01Af1HTEzWdqelvanqfTWwyxSzuNy78Rf_j-gTagHGH</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Xu, Yuefeng</creator><creator>Zhong, Rui</creator><creator>Zhang, Chao</creator><creator>Yu, Jun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>Multiplayer battle game-inspired optimizer for complex optimization problems</title><author>Xu, Yuefeng ; Zhong, Rui ; Zhang, Chao ; Yu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Exploitation</topic><topic>Games</topic><topic>Heuristic methods</topic><topic>Linear programming</topic><topic>Operating Systems</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Performance evaluation</topic><topic>Processor Architectures</topic><topic>Researchers</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yuefeng</creatorcontrib><creatorcontrib>Zhong, Rui</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yuefeng</au><au>Zhong, Rui</au><au>Zhang, Chao</au><au>Yu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplayer battle game-inspired optimizer for complex optimization problems</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>27</volume><issue>6</issue><spage>8307</spage><epage>8331</epage><pages>8307-8331</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Various popular multiplayer battle royale games share a lot of common elements. Drawing from our observations, we summarized these shared characteristics and subsequently proposed a novel heuristic algorithm named multiplayer battle game-inspired optimizer (MBGO). The proposed MBGO streamlines mainstream multiplayer battle royale games into two discrete phases: movement and battle. Specifically, the movement phase incorporates the principles of commonly encountered “safe zones” to incentivize participants to relocate to areas with a higher survival potential. The battle phase simulates a range of strategies players adopt in various situations to enhance the diversity of the population. To evaluate and analyze the performance of the proposed MBGO, we executed it alongside ten other algorithms, including three classics and five latest ones, across multiple diverse dimensions within the CEC2017 and CEC2020 benchmark functions. In addition, we employed several industrial design problems to evaluate the scalability and practicality of the proposed MBGO. The statistical analysis results reveal that the novel MBGO demonstrates significant competitiveness, excelling in convergence speed and achieving high levels of convergence accuracy across both benchmark functions and real-world problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04448-w</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2024-09, Vol.27 (6), p.8307-8331 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_3100672475 |
source | Springer Nature |
subjects | Algorithms Benchmarks Computer Communication Networks Computer Science Convergence Design engineering Exploitation Games Heuristic methods Linear programming Operating Systems Optimization algorithms Optimization techniques Performance evaluation Processor Architectures Researchers Statistical analysis |
title | Multiplayer battle game-inspired optimizer for complex optimization problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplayer%20battle%20game-inspired%20optimizer%20for%20complex%20optimization%20problems&rft.jtitle=Cluster%20computing&rft.au=Xu,%20Yuefeng&rft.date=2024-09-01&rft.volume=27&rft.issue=6&rft.spage=8307&rft.epage=8331&rft.pages=8307-8331&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04448-w&rft_dat=%3Cproquest_cross%3E3100672475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-253c1310ca3326a4e64a82f180bf1fdcdec489cf3c5525f530f1517ff048b1c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100672475&rft_id=info:pmid/&rfr_iscdi=true |