Loading…
Phase retrieval for refraction-enhanced x-ray radiography using a deep neural network
X-ray refraction-enhanced radiography (RER) or phase contrast imaging is widely used to study internal discontinuities within materials. The resulting radiograph captures both the decrease in intensity caused by material absorption along the x-ray path, as well as the phase shift, which is highly se...
Saved in:
Published in: | Physics of plasmas 2024-09, Vol.31 (9) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c209t-6ed1aec6f9f579e562923edaa7bfc585ed791d37e9b8d3e08e7c272186f048913 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 31 |
creator | Jiang, S. Landen, O. L. Whitley, H. D. Hamel, S. London, R. A. Sterne, P. Hansen, S. B. Hu, S. X. Collins, G. W. Ping, Y. |
description | X-ray refraction-enhanced radiography (RER) or phase contrast imaging is widely used to study internal discontinuities within materials. The resulting radiograph captures both the decrease in intensity caused by material absorption along the x-ray path, as well as the phase shift, which is highly sensitive to gradients in density. A significant challenge lies in effectively analyzing the radiographs to decouple the intensity and phase information and accurately ascertain the density profile. Conventional algorithms often yield ambiguous and unrealistic results due to difficulties in including physical constraints and other relevant information. We have developed an algorithm that uses a deep neural network to address these issues and applied it to extract the detailed density profile from an experimental RER. To generalize the applicability of our algorithm, we have developed a technique that quantitatively evaluates the complexity of the phase retrieval process based on the characteristics of the sample and the configuration of the experiment. Accordingly, this evaluation aids in the selection of the neural network architecture for each specific case. Beyond RER, the model has potential applications for other diagnostics where phase retrieval analysis is required. |
doi_str_mv | 10.1063/5.0211331 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_3100973723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100973723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-6ed1aec6f9f579e562923edaa7bfc585ed791d37e9b8d3e08e7c272186f048913</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4e_AdBTwpd89EmzVHEL1jQgwveQjaZbruuSU1adf-9LbtnTzMDz8y8PAidUzKjRPCbYkYYpZzTAzShpFSZFDI_HHtJMiHy92N0ktKaEJKLopygxWttEuAIXWzg22xwFeIwVdHYrgk-A18bb8Hh3yyaLY7GNWEVTVtvcZ8av8IGO4AWe-jjsO2h-wnx4xQdVWaT4Gxfp2jxcP9295TNXx6f727nmWVEdZkARw1YUamqkAoKwRTj4IyRy8oWZQFOKuq4BLUsHQdSgrRMMlqKiuSlonyKLnZ3Q-oanWzTga1t8B5sp1mel1wUA3S5g9oYvnpInV6HPvohl-aUECW5ZHygrnaUjSGlwYBuY_Np4lZToke1utB7tQN7vWPHj2b09A_8B2_xeD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100973723</pqid></control><display><type>article</type><title>Phase retrieval for refraction-enhanced x-ray radiography using a deep neural network</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Jiang, S. ; Landen, O. L. ; Whitley, H. D. ; Hamel, S. ; London, R. A. ; Sterne, P. ; Hansen, S. B. ; Hu, S. X. ; Collins, G. W. ; Ping, Y.</creator><creatorcontrib>Jiang, S. ; Landen, O. L. ; Whitley, H. D. ; Hamel, S. ; London, R. A. ; Sterne, P. ; Hansen, S. B. ; Hu, S. X. ; Collins, G. W. ; Ping, Y. ; Univ. of Rochester, NY (United States) ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>X-ray refraction-enhanced radiography (RER) or phase contrast imaging is widely used to study internal discontinuities within materials. The resulting radiograph captures both the decrease in intensity caused by material absorption along the x-ray path, as well as the phase shift, which is highly sensitive to gradients in density. A significant challenge lies in effectively analyzing the radiographs to decouple the intensity and phase information and accurately ascertain the density profile. Conventional algorithms often yield ambiguous and unrealistic results due to difficulties in including physical constraints and other relevant information. We have developed an algorithm that uses a deep neural network to address these issues and applied it to extract the detailed density profile from an experimental RER. To generalize the applicability of our algorithm, we have developed a technique that quantitatively evaluates the complexity of the phase retrieval process based on the characteristics of the sample and the configuration of the experiment. Accordingly, this evaluation aids in the selection of the neural network architecture for each specific case. Beyond RER, the model has potential applications for other diagnostics where phase retrieval analysis is required.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0211331</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Deep learning ; Density ; Depth profiling ; Fresnel diffraction ; Fusion energy ; Information retrieval ; Integral transforms ; Material absorption ; Neural networks ; Phase contrast ; Phase contrast microscopy ; Phase retrieval ; Physics - Plasma physics ; Plasma confinement ; Radiographs ; Radiography ; X ray imagery ; X ray refraction ; X-ray camera ; X-ray radiography</subject><ispartof>Physics of plasmas, 2024-09, Vol.31 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-6ed1aec6f9f579e562923edaa7bfc585ed791d37e9b8d3e08e7c272186f048913</cites><orcidid>0000-0002-1499-8217 ; 0000-0002-0381-3846 ; 0000-0002-2344-8698 ; 0000-0002-6398-3185 ; 0000-0003-2465-3818 ; 0000-0002-4883-1087 ; 0000-0002-4879-9072 ; 0000-0003-4246-0892 ; 0000-0003-1853-5815 ; 0000-0002-1886-9770 ; 0000000263983185 ; 0000000248831087 ; 0000000203813846 ; 0000000214998217 ; 0000000223448698 ; 0000000324653818 ; 0000000218869770 ; 0000000342460892 ; 0000000318535815 ; 0000000248799072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0211331$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27923,27924,76254</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2448365$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, S.</creatorcontrib><creatorcontrib>Landen, O. L.</creatorcontrib><creatorcontrib>Whitley, H. D.</creatorcontrib><creatorcontrib>Hamel, S.</creatorcontrib><creatorcontrib>London, R. A.</creatorcontrib><creatorcontrib>Sterne, P.</creatorcontrib><creatorcontrib>Hansen, S. B.</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Collins, G. W.</creatorcontrib><creatorcontrib>Ping, Y.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Phase retrieval for refraction-enhanced x-ray radiography using a deep neural network</title><title>Physics of plasmas</title><description>X-ray refraction-enhanced radiography (RER) or phase contrast imaging is widely used to study internal discontinuities within materials. The resulting radiograph captures both the decrease in intensity caused by material absorption along the x-ray path, as well as the phase shift, which is highly sensitive to gradients in density. A significant challenge lies in effectively analyzing the radiographs to decouple the intensity and phase information and accurately ascertain the density profile. Conventional algorithms often yield ambiguous and unrealistic results due to difficulties in including physical constraints and other relevant information. We have developed an algorithm that uses a deep neural network to address these issues and applied it to extract the detailed density profile from an experimental RER. To generalize the applicability of our algorithm, we have developed a technique that quantitatively evaluates the complexity of the phase retrieval process based on the characteristics of the sample and the configuration of the experiment. Accordingly, this evaluation aids in the selection of the neural network architecture for each specific case. Beyond RER, the model has potential applications for other diagnostics where phase retrieval analysis is required.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Density</subject><subject>Depth profiling</subject><subject>Fresnel diffraction</subject><subject>Fusion energy</subject><subject>Information retrieval</subject><subject>Integral transforms</subject><subject>Material absorption</subject><subject>Neural networks</subject><subject>Phase contrast</subject><subject>Phase contrast microscopy</subject><subject>Phase retrieval</subject><subject>Physics - Plasma physics</subject><subject>Plasma confinement</subject><subject>Radiographs</subject><subject>Radiography</subject><subject>X ray imagery</subject><subject>X ray refraction</subject><subject>X-ray camera</subject><subject>X-ray radiography</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kE1LxDAQhoMouK4e_AdBTwpd89EmzVHEL1jQgwveQjaZbruuSU1adf-9LbtnTzMDz8y8PAidUzKjRPCbYkYYpZzTAzShpFSZFDI_HHtJMiHy92N0ktKaEJKLopygxWttEuAIXWzg22xwFeIwVdHYrgk-A18bb8Hh3yyaLY7GNWEVTVtvcZ8av8IGO4AWe-jjsO2h-wnx4xQdVWaT4Gxfp2jxcP9295TNXx6f727nmWVEdZkARw1YUamqkAoKwRTj4IyRy8oWZQFOKuq4BLUsHQdSgrRMMlqKiuSlonyKLnZ3Q-oanWzTga1t8B5sp1mel1wUA3S5g9oYvnpInV6HPvohl-aUECW5ZHygrnaUjSGlwYBuY_Np4lZToke1utB7tQN7vWPHj2b09A_8B2_xeD4</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Jiang, S.</creator><creator>Landen, O. L.</creator><creator>Whitley, H. D.</creator><creator>Hamel, S.</creator><creator>London, R. A.</creator><creator>Sterne, P.</creator><creator>Hansen, S. B.</creator><creator>Hu, S. X.</creator><creator>Collins, G. W.</creator><creator>Ping, Y.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1499-8217</orcidid><orcidid>https://orcid.org/0000-0002-0381-3846</orcidid><orcidid>https://orcid.org/0000-0002-2344-8698</orcidid><orcidid>https://orcid.org/0000-0002-6398-3185</orcidid><orcidid>https://orcid.org/0000-0003-2465-3818</orcidid><orcidid>https://orcid.org/0000-0002-4883-1087</orcidid><orcidid>https://orcid.org/0000-0002-4879-9072</orcidid><orcidid>https://orcid.org/0000-0003-4246-0892</orcidid><orcidid>https://orcid.org/0000-0003-1853-5815</orcidid><orcidid>https://orcid.org/0000-0002-1886-9770</orcidid><orcidid>https://orcid.org/0000000263983185</orcidid><orcidid>https://orcid.org/0000000248831087</orcidid><orcidid>https://orcid.org/0000000203813846</orcidid><orcidid>https://orcid.org/0000000214998217</orcidid><orcidid>https://orcid.org/0000000223448698</orcidid><orcidid>https://orcid.org/0000000324653818</orcidid><orcidid>https://orcid.org/0000000218869770</orcidid><orcidid>https://orcid.org/0000000342460892</orcidid><orcidid>https://orcid.org/0000000318535815</orcidid><orcidid>https://orcid.org/0000000248799072</orcidid></search><sort><creationdate>20240901</creationdate><title>Phase retrieval for refraction-enhanced x-ray radiography using a deep neural network</title><author>Jiang, S. ; Landen, O. L. ; Whitley, H. D. ; Hamel, S. ; London, R. A. ; Sterne, P. ; Hansen, S. B. ; Hu, S. X. ; Collins, G. W. ; Ping, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-6ed1aec6f9f579e562923edaa7bfc585ed791d37e9b8d3e08e7c272186f048913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Density</topic><topic>Depth profiling</topic><topic>Fresnel diffraction</topic><topic>Fusion energy</topic><topic>Information retrieval</topic><topic>Integral transforms</topic><topic>Material absorption</topic><topic>Neural networks</topic><topic>Phase contrast</topic><topic>Phase contrast microscopy</topic><topic>Phase retrieval</topic><topic>Physics - Plasma physics</topic><topic>Plasma confinement</topic><topic>Radiographs</topic><topic>Radiography</topic><topic>X ray imagery</topic><topic>X ray refraction</topic><topic>X-ray camera</topic><topic>X-ray radiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, S.</creatorcontrib><creatorcontrib>Landen, O. L.</creatorcontrib><creatorcontrib>Whitley, H. D.</creatorcontrib><creatorcontrib>Hamel, S.</creatorcontrib><creatorcontrib>London, R. A.</creatorcontrib><creatorcontrib>Sterne, P.</creatorcontrib><creatorcontrib>Hansen, S. B.</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Collins, G. W.</creatorcontrib><creatorcontrib>Ping, Y.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, S.</au><au>Landen, O. L.</au><au>Whitley, H. D.</au><au>Hamel, S.</au><au>London, R. A.</au><au>Sterne, P.</au><au>Hansen, S. B.</au><au>Hu, S. X.</au><au>Collins, G. W.</au><au>Ping, Y.</au><aucorp>Univ. of Rochester, NY (United States)</aucorp><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase retrieval for refraction-enhanced x-ray radiography using a deep neural network</atitle><jtitle>Physics of plasmas</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>31</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>X-ray refraction-enhanced radiography (RER) or phase contrast imaging is widely used to study internal discontinuities within materials. The resulting radiograph captures both the decrease in intensity caused by material absorption along the x-ray path, as well as the phase shift, which is highly sensitive to gradients in density. A significant challenge lies in effectively analyzing the radiographs to decouple the intensity and phase information and accurately ascertain the density profile. Conventional algorithms often yield ambiguous and unrealistic results due to difficulties in including physical constraints and other relevant information. We have developed an algorithm that uses a deep neural network to address these issues and applied it to extract the detailed density profile from an experimental RER. To generalize the applicability of our algorithm, we have developed a technique that quantitatively evaluates the complexity of the phase retrieval process based on the characteristics of the sample and the configuration of the experiment. Accordingly, this evaluation aids in the selection of the neural network architecture for each specific case. Beyond RER, the model has potential applications for other diagnostics where phase retrieval analysis is required.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0211331</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1499-8217</orcidid><orcidid>https://orcid.org/0000-0002-0381-3846</orcidid><orcidid>https://orcid.org/0000-0002-2344-8698</orcidid><orcidid>https://orcid.org/0000-0002-6398-3185</orcidid><orcidid>https://orcid.org/0000-0003-2465-3818</orcidid><orcidid>https://orcid.org/0000-0002-4883-1087</orcidid><orcidid>https://orcid.org/0000-0002-4879-9072</orcidid><orcidid>https://orcid.org/0000-0003-4246-0892</orcidid><orcidid>https://orcid.org/0000-0003-1853-5815</orcidid><orcidid>https://orcid.org/0000-0002-1886-9770</orcidid><orcidid>https://orcid.org/0000000263983185</orcidid><orcidid>https://orcid.org/0000000248831087</orcidid><orcidid>https://orcid.org/0000000203813846</orcidid><orcidid>https://orcid.org/0000000214998217</orcidid><orcidid>https://orcid.org/0000000223448698</orcidid><orcidid>https://orcid.org/0000000324653818</orcidid><orcidid>https://orcid.org/0000000218869770</orcidid><orcidid>https://orcid.org/0000000342460892</orcidid><orcidid>https://orcid.org/0000000318535815</orcidid><orcidid>https://orcid.org/0000000248799072</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2024-09, Vol.31 (9) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_3100973723 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Algorithms Artificial neural networks Deep learning Density Depth profiling Fresnel diffraction Fusion energy Information retrieval Integral transforms Material absorption Neural networks Phase contrast Phase contrast microscopy Phase retrieval Physics - Plasma physics Plasma confinement Radiographs Radiography X ray imagery X ray refraction X-ray camera X-ray radiography |
title | Phase retrieval for refraction-enhanced x-ray radiography using a deep neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20retrieval%20for%20refraction-enhanced%20x-ray%20radiography%20using%20a%20deep%20neural%20network&rft.jtitle=Physics%20of%20plasmas&rft.au=Jiang,%20S.&rft.aucorp=Univ.%20of%20Rochester,%20NY%20(United%20States)&rft.date=2024-09-01&rft.volume=31&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0211331&rft_dat=%3Cproquest_osti_%3E3100973723%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c209t-6ed1aec6f9f579e562923edaa7bfc585ed791d37e9b8d3e08e7c272186f048913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100973723&rft_id=info:pmid/&rfr_iscdi=true |