Loading…
High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia
The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backsca...
Saved in:
Published in: | Mineralium deposita 2024-10, Vol.59 (7), p.1479-1503 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3 |
container_end_page | 1503 |
container_issue | 7 |
container_start_page | 1479 |
container_title | Mineralium deposita |
container_volume | 59 |
creator | Bamforth, Tobias G. Xia, Fang Tiddy, Caroline J. González-Álvarez, Ignacio Brugger, Joël Hu, Si-Yu Schoneveld, Louise E. Pearce, Mark A. Putnis, Andrew |
description | The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backscatter diffraction to understand the controls that govern high-grade REE accumulation during periods of intense weathering. Petrological assessments indicate the transformation of an apatite-calcite-aluminosilicate-bearing protolith to a supergene assemblage of Fe-oxides, kaolinite and REE-phosphate minerals that include rhabdophane-(Ce), monazite-(Ce) and florencite-(Ce). This transformation was facilitated by progressive acidification of the weathering fluid, which is indicated by: 1) the increasing crystallinity of authigenic Fe-oxides and kaolinite, which led to REE desorption; 2) the textural evolution and increase in grain size of authigenic REE-phosphates from nanoscopic crystallites, to acicular needles, to micro-scale hexagonal prisms; 3) the late dissolution of REE-phosphates; and 4) the replacement of goethite by jarosite, whose sulfate component originated from the oxidation and weathering of proximal sulfide minerals. Alongside the depletion of pH-buffering carbonate minerals that are indicated by the preservation of calcite menisci, this sulfide dissolution also facilitated acid generation. Results illustrate how highly acidic weathering fluids might facilitate either REE mobilization or REE accumulation in regolith. High-grade REE accumulation under acidic supergene conditions is prioritized when the host-rock contains a significant source of depositional ligands (i.e., phosphate in the form of apatite) that can be readily leached during intense weathering. Exploration companies should therefore assay routinely for REEs in any heavily weathered phosphatic rock, due to the observed efficiency of phosphate minerals as geochemical traps for REE accumulation. |
doi_str_mv | 10.1007/s00126-024-01283-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100996799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100996799</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3</originalsourceid><addsrcrecordid>eNp9kMuKFTEQhoMoeBx9AVcFbo0mnb7F3XA4zgwOCF7WoTpdOd1Dn3Sbi-Az-NJGW3DnqlLk-_-Cj7GXUryRQnRvoxCyarmoal4eveLVI3aQtaq47Nv2MTsIUb7rRvdP2bMYH4QQWtbiwH7ezueJ3wQcCT6dToDW5kteMM2rh9lDoPO6zGl6B3c-FjRFcGG9QMwbhTN5AlwShZ1fHaAH3MqWiIfZTvCdSgkmSBPBB9yyHxGOGS6zp9fwec1pguscU8BlxufsicMl0ou_84p9fX_6crzl9x9v7o7X9xyV6hJvR2kHcuM4SNGPtWibBpUbrbWEvWgG0kPlRK-wboemrjrtcLCdstiqnpR26oq92nu3sH7LFJN5WHPw5aRRxabWbad1oaqdsmGNMZAzW5gvGH4YKcxv6WaXbop080e6qUpI7aFYYH-m8K_6P6lf_-uGvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100996799</pqid></control><display><type>article</type><title>High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia</title><source>Springer Link</source><creator>Bamforth, Tobias G. ; Xia, Fang ; Tiddy, Caroline J. ; González-Álvarez, Ignacio ; Brugger, Joël ; Hu, Si-Yu ; Schoneveld, Louise E. ; Pearce, Mark A. ; Putnis, Andrew</creator><creatorcontrib>Bamforth, Tobias G. ; Xia, Fang ; Tiddy, Caroline J. ; González-Álvarez, Ignacio ; Brugger, Joël ; Hu, Si-Yu ; Schoneveld, Louise E. ; Pearce, Mark A. ; Putnis, Andrew</creatorcontrib><description>The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backscatter diffraction to understand the controls that govern high-grade REE accumulation during periods of intense weathering. Petrological assessments indicate the transformation of an apatite-calcite-aluminosilicate-bearing protolith to a supergene assemblage of Fe-oxides, kaolinite and REE-phosphate minerals that include rhabdophane-(Ce), monazite-(Ce) and florencite-(Ce). This transformation was facilitated by progressive acidification of the weathering fluid, which is indicated by: 1) the increasing crystallinity of authigenic Fe-oxides and kaolinite, which led to REE desorption; 2) the textural evolution and increase in grain size of authigenic REE-phosphates from nanoscopic crystallites, to acicular needles, to micro-scale hexagonal prisms; 3) the late dissolution of REE-phosphates; and 4) the replacement of goethite by jarosite, whose sulfate component originated from the oxidation and weathering of proximal sulfide minerals. Alongside the depletion of pH-buffering carbonate minerals that are indicated by the preservation of calcite menisci, this sulfide dissolution also facilitated acid generation. Results illustrate how highly acidic weathering fluids might facilitate either REE mobilization or REE accumulation in regolith. High-grade REE accumulation under acidic supergene conditions is prioritized when the host-rock contains a significant source of depositional ligands (i.e., phosphate in the form of apatite) that can be readily leached during intense weathering. Exploration companies should therefore assay routinely for REEs in any heavily weathered phosphatic rock, due to the observed efficiency of phosphate minerals as geochemical traps for REE accumulation.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-024-01283-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Acidic oxides ; Acidification ; Aluminosilicates ; Aluminum silicates ; Apatite ; Calcite ; Carbonate minerals ; Carbonates ; Cerium ; Crystallites ; Crystals ; Dissolution ; Dissolving ; Earth and Environmental Science ; Earth Sciences ; Electron backscatter diffraction ; Electron microscopy ; Fluids ; Fluorescence ; Fluorescence microscopy ; Geology ; Goethite ; Grain size ; Iron ; Jarosite ; Kaolinite ; Leaching ; Ligands ; Microscopy ; Mineral exploration ; Mineral Resources ; Mineralogy ; Minerals ; Monazite ; Oxidation ; Phosphate minerals ; Phosphates ; Prisms ; Regolith ; Rocks ; Scanning electron microscopy ; Sulfides ; Sulphides ; Veins (geology) ; Weathering ; X rays ; X-ray diffraction ; X-ray fluorescence</subject><ispartof>Mineralium deposita, 2024-10, Vol.59 (7), p.1479-1503</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3</cites><orcidid>0000-0003-1510-5764 ; 0009-0005-3128-3722 ; 0000-0003-2247-2132 ; 0000-0002-4950-3640 ; 0000-0002-9324-1676 ; 0000-0001-6484-3291 ; 0000-0003-2232-9942 ; 0000-0003-4533-8008 ; 0000-0002-4519-7279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bamforth, Tobias G.</creatorcontrib><creatorcontrib>Xia, Fang</creatorcontrib><creatorcontrib>Tiddy, Caroline J.</creatorcontrib><creatorcontrib>González-Álvarez, Ignacio</creatorcontrib><creatorcontrib>Brugger, Joël</creatorcontrib><creatorcontrib>Hu, Si-Yu</creatorcontrib><creatorcontrib>Schoneveld, Louise E.</creatorcontrib><creatorcontrib>Pearce, Mark A.</creatorcontrib><creatorcontrib>Putnis, Andrew</creatorcontrib><title>High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backscatter diffraction to understand the controls that govern high-grade REE accumulation during periods of intense weathering. Petrological assessments indicate the transformation of an apatite-calcite-aluminosilicate-bearing protolith to a supergene assemblage of Fe-oxides, kaolinite and REE-phosphate minerals that include rhabdophane-(Ce), monazite-(Ce) and florencite-(Ce). This transformation was facilitated by progressive acidification of the weathering fluid, which is indicated by: 1) the increasing crystallinity of authigenic Fe-oxides and kaolinite, which led to REE desorption; 2) the textural evolution and increase in grain size of authigenic REE-phosphates from nanoscopic crystallites, to acicular needles, to micro-scale hexagonal prisms; 3) the late dissolution of REE-phosphates; and 4) the replacement of goethite by jarosite, whose sulfate component originated from the oxidation and weathering of proximal sulfide minerals. Alongside the depletion of pH-buffering carbonate minerals that are indicated by the preservation of calcite menisci, this sulfide dissolution also facilitated acid generation. Results illustrate how highly acidic weathering fluids might facilitate either REE mobilization or REE accumulation in regolith. High-grade REE accumulation under acidic supergene conditions is prioritized when the host-rock contains a significant source of depositional ligands (i.e., phosphate in the form of apatite) that can be readily leached during intense weathering. Exploration companies should therefore assay routinely for REEs in any heavily weathered phosphatic rock, due to the observed efficiency of phosphate minerals as geochemical traps for REE accumulation.</description><subject>Accumulation</subject><subject>Acidic oxides</subject><subject>Acidification</subject><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Apatite</subject><subject>Calcite</subject><subject>Carbonate minerals</subject><subject>Carbonates</subject><subject>Cerium</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electron backscatter diffraction</subject><subject>Electron microscopy</subject><subject>Fluids</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Geology</subject><subject>Goethite</subject><subject>Grain size</subject><subject>Iron</subject><subject>Jarosite</subject><subject>Kaolinite</subject><subject>Leaching</subject><subject>Ligands</subject><subject>Microscopy</subject><subject>Mineral exploration</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Monazite</subject><subject>Oxidation</subject><subject>Phosphate minerals</subject><subject>Phosphates</subject><subject>Prisms</subject><subject>Regolith</subject><subject>Rocks</subject><subject>Scanning electron microscopy</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Veins (geology)</subject><subject>Weathering</subject><subject>X rays</subject><subject>X-ray diffraction</subject><subject>X-ray fluorescence</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMuKFTEQhoMoeBx9AVcFbo0mnb7F3XA4zgwOCF7WoTpdOd1Dn3Sbi-Az-NJGW3DnqlLk-_-Cj7GXUryRQnRvoxCyarmoal4eveLVI3aQtaq47Nv2MTsIUb7rRvdP2bMYH4QQWtbiwH7ezueJ3wQcCT6dToDW5kteMM2rh9lDoPO6zGl6B3c-FjRFcGG9QMwbhTN5AlwShZ1fHaAH3MqWiIfZTvCdSgkmSBPBB9yyHxGOGS6zp9fwec1pguscU8BlxufsicMl0ou_84p9fX_6crzl9x9v7o7X9xyV6hJvR2kHcuM4SNGPtWibBpUbrbWEvWgG0kPlRK-wboemrjrtcLCdstiqnpR26oq92nu3sH7LFJN5WHPw5aRRxabWbad1oaqdsmGNMZAzW5gvGH4YKcxv6WaXbop080e6qUpI7aFYYH-m8K_6P6lf_-uGvw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bamforth, Tobias G.</creator><creator>Xia, Fang</creator><creator>Tiddy, Caroline J.</creator><creator>González-Álvarez, Ignacio</creator><creator>Brugger, Joël</creator><creator>Hu, Si-Yu</creator><creator>Schoneveld, Louise E.</creator><creator>Pearce, Mark A.</creator><creator>Putnis, Andrew</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-1510-5764</orcidid><orcidid>https://orcid.org/0009-0005-3128-3722</orcidid><orcidid>https://orcid.org/0000-0003-2247-2132</orcidid><orcidid>https://orcid.org/0000-0002-4950-3640</orcidid><orcidid>https://orcid.org/0000-0002-9324-1676</orcidid><orcidid>https://orcid.org/0000-0001-6484-3291</orcidid><orcidid>https://orcid.org/0000-0003-2232-9942</orcidid><orcidid>https://orcid.org/0000-0003-4533-8008</orcidid><orcidid>https://orcid.org/0000-0002-4519-7279</orcidid></search><sort><creationdate>20241001</creationdate><title>High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia</title><author>Bamforth, Tobias G. ; Xia, Fang ; Tiddy, Caroline J. ; González-Álvarez, Ignacio ; Brugger, Joël ; Hu, Si-Yu ; Schoneveld, Louise E. ; Pearce, Mark A. ; Putnis, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Acidic oxides</topic><topic>Acidification</topic><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Apatite</topic><topic>Calcite</topic><topic>Carbonate minerals</topic><topic>Carbonates</topic><topic>Cerium</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electron backscatter diffraction</topic><topic>Electron microscopy</topic><topic>Fluids</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Geology</topic><topic>Goethite</topic><topic>Grain size</topic><topic>Iron</topic><topic>Jarosite</topic><topic>Kaolinite</topic><topic>Leaching</topic><topic>Ligands</topic><topic>Microscopy</topic><topic>Mineral exploration</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Monazite</topic><topic>Oxidation</topic><topic>Phosphate minerals</topic><topic>Phosphates</topic><topic>Prisms</topic><topic>Regolith</topic><topic>Rocks</topic><topic>Scanning electron microscopy</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Veins (geology)</topic><topic>Weathering</topic><topic>X rays</topic><topic>X-ray diffraction</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bamforth, Tobias G.</creatorcontrib><creatorcontrib>Xia, Fang</creatorcontrib><creatorcontrib>Tiddy, Caroline J.</creatorcontrib><creatorcontrib>González-Álvarez, Ignacio</creatorcontrib><creatorcontrib>Brugger, Joël</creatorcontrib><creatorcontrib>Hu, Si-Yu</creatorcontrib><creatorcontrib>Schoneveld, Louise E.</creatorcontrib><creatorcontrib>Pearce, Mark A.</creatorcontrib><creatorcontrib>Putnis, Andrew</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bamforth, Tobias G.</au><au>Xia, Fang</au><au>Tiddy, Caroline J.</au><au>González-Álvarez, Ignacio</au><au>Brugger, Joël</au><au>Hu, Si-Yu</au><au>Schoneveld, Louise E.</au><au>Pearce, Mark A.</au><au>Putnis, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>59</volume><issue>7</issue><spage>1479</spage><epage>1503</epage><pages>1479-1503</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backscatter diffraction to understand the controls that govern high-grade REE accumulation during periods of intense weathering. Petrological assessments indicate the transformation of an apatite-calcite-aluminosilicate-bearing protolith to a supergene assemblage of Fe-oxides, kaolinite and REE-phosphate minerals that include rhabdophane-(Ce), monazite-(Ce) and florencite-(Ce). This transformation was facilitated by progressive acidification of the weathering fluid, which is indicated by: 1) the increasing crystallinity of authigenic Fe-oxides and kaolinite, which led to REE desorption; 2) the textural evolution and increase in grain size of authigenic REE-phosphates from nanoscopic crystallites, to acicular needles, to micro-scale hexagonal prisms; 3) the late dissolution of REE-phosphates; and 4) the replacement of goethite by jarosite, whose sulfate component originated from the oxidation and weathering of proximal sulfide minerals. Alongside the depletion of pH-buffering carbonate minerals that are indicated by the preservation of calcite menisci, this sulfide dissolution also facilitated acid generation. Results illustrate how highly acidic weathering fluids might facilitate either REE mobilization or REE accumulation in regolith. High-grade REE accumulation under acidic supergene conditions is prioritized when the host-rock contains a significant source of depositional ligands (i.e., phosphate in the form of apatite) that can be readily leached during intense weathering. Exploration companies should therefore assay routinely for REEs in any heavily weathered phosphatic rock, due to the observed efficiency of phosphate minerals as geochemical traps for REE accumulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-024-01283-2</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1510-5764</orcidid><orcidid>https://orcid.org/0009-0005-3128-3722</orcidid><orcidid>https://orcid.org/0000-0003-2247-2132</orcidid><orcidid>https://orcid.org/0000-0002-4950-3640</orcidid><orcidid>https://orcid.org/0000-0002-9324-1676</orcidid><orcidid>https://orcid.org/0000-0001-6484-3291</orcidid><orcidid>https://orcid.org/0000-0003-2232-9942</orcidid><orcidid>https://orcid.org/0000-0003-4533-8008</orcidid><orcidid>https://orcid.org/0000-0002-4519-7279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2024-10, Vol.59 (7), p.1479-1503 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_3100996799 |
source | Springer Link |
subjects | Accumulation Acidic oxides Acidification Aluminosilicates Aluminum silicates Apatite Calcite Carbonate minerals Carbonates Cerium Crystallites Crystals Dissolution Dissolving Earth and Environmental Science Earth Sciences Electron backscatter diffraction Electron microscopy Fluids Fluorescence Fluorescence microscopy Geology Goethite Grain size Iron Jarosite Kaolinite Leaching Ligands Microscopy Mineral exploration Mineral Resources Mineralogy Minerals Monazite Oxidation Phosphate minerals Phosphates Prisms Regolith Rocks Scanning electron microscopy Sulfides Sulphides Veins (geology) Weathering X rays X-ray diffraction X-ray fluorescence |
title | High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Grade%20REE%20accumulation%20in%20regolith:%20Insights%20from%20supergene%20alteration%20of%20an%20apatite-rich%20vein%20at%20the%20Kapunda%20Cu%20mine,%20South%20Australia&rft.jtitle=Mineralium%20deposita&rft.au=Bamforth,%20Tobias%20G.&rft.date=2024-10-01&rft.volume=59&rft.issue=7&rft.spage=1479&rft.epage=1503&rft.pages=1479-1503&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-024-01283-2&rft_dat=%3Cproquest_cross%3E3100996799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100996799&rft_id=info:pmid/&rfr_iscdi=true |