Loading…

High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia

The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backsca...

Full description

Saved in:
Bibliographic Details
Published in:Mineralium deposita 2024-10, Vol.59 (7), p.1479-1503
Main Authors: Bamforth, Tobias G., Xia, Fang, Tiddy, Caroline J., González-Álvarez, Ignacio, Brugger, Joël, Hu, Si-Yu, Schoneveld, Louise E., Pearce, Mark A., Putnis, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3
container_end_page 1503
container_issue 7
container_start_page 1479
container_title Mineralium deposita
container_volume 59
creator Bamforth, Tobias G.
Xia, Fang
Tiddy, Caroline J.
González-Álvarez, Ignacio
Brugger, Joël
Hu, Si-Yu
Schoneveld, Louise E.
Pearce, Mark A.
Putnis, Andrew
description The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backscatter diffraction to understand the controls that govern high-grade REE accumulation during periods of intense weathering. Petrological assessments indicate the transformation of an apatite-calcite-aluminosilicate-bearing protolith to a supergene assemblage of Fe-oxides, kaolinite and REE-phosphate minerals that include rhabdophane-(Ce), monazite-(Ce) and florencite-(Ce). This transformation was facilitated by progressive acidification of the weathering fluid, which is indicated by: 1) the increasing crystallinity of authigenic Fe-oxides and kaolinite, which led to REE desorption; 2) the textural evolution and increase in grain size of authigenic REE-phosphates from nanoscopic crystallites, to acicular needles, to micro-scale hexagonal prisms; 3) the late dissolution of REE-phosphates; and 4) the replacement of goethite by jarosite, whose sulfate component originated from the oxidation and weathering of proximal sulfide minerals. Alongside the depletion of pH-buffering carbonate minerals that are indicated by the preservation of calcite menisci, this sulfide dissolution also facilitated acid generation. Results illustrate how highly acidic weathering fluids might facilitate either REE mobilization or REE accumulation in regolith. High-grade REE accumulation under acidic supergene conditions is prioritized when the host-rock contains a significant source of depositional ligands (i.e., phosphate in the form of apatite) that can be readily leached during intense weathering. Exploration companies should therefore assay routinely for REEs in any heavily weathered phosphatic rock, due to the observed efficiency of phosphate minerals as geochemical traps for REE accumulation.
doi_str_mv 10.1007/s00126-024-01283-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100996799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100996799</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3</originalsourceid><addsrcrecordid>eNp9kMuKFTEQhoMoeBx9AVcFbo0mnb7F3XA4zgwOCF7WoTpdOd1Dn3Sbi-Az-NJGW3DnqlLk-_-Cj7GXUryRQnRvoxCyarmoal4eveLVI3aQtaq47Nv2MTsIUb7rRvdP2bMYH4QQWtbiwH7ezueJ3wQcCT6dToDW5kteMM2rh9lDoPO6zGl6B3c-FjRFcGG9QMwbhTN5AlwShZ1fHaAH3MqWiIfZTvCdSgkmSBPBB9yyHxGOGS6zp9fwec1pguscU8BlxufsicMl0ou_84p9fX_6crzl9x9v7o7X9xyV6hJvR2kHcuM4SNGPtWibBpUbrbWEvWgG0kPlRK-wboemrjrtcLCdstiqnpR26oq92nu3sH7LFJN5WHPw5aRRxabWbad1oaqdsmGNMZAzW5gvGH4YKcxv6WaXbop080e6qUpI7aFYYH-m8K_6P6lf_-uGvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100996799</pqid></control><display><type>article</type><title>High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia</title><source>Springer Link</source><creator>Bamforth, Tobias G. ; Xia, Fang ; Tiddy, Caroline J. ; González-Álvarez, Ignacio ; Brugger, Joël ; Hu, Si-Yu ; Schoneveld, Louise E. ; Pearce, Mark A. ; Putnis, Andrew</creator><creatorcontrib>Bamforth, Tobias G. ; Xia, Fang ; Tiddy, Caroline J. ; González-Álvarez, Ignacio ; Brugger, Joël ; Hu, Si-Yu ; Schoneveld, Louise E. ; Pearce, Mark A. ; Putnis, Andrew</creatorcontrib><description>The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backscatter diffraction to understand the controls that govern high-grade REE accumulation during periods of intense weathering. Petrological assessments indicate the transformation of an apatite-calcite-aluminosilicate-bearing protolith to a supergene assemblage of Fe-oxides, kaolinite and REE-phosphate minerals that include rhabdophane-(Ce), monazite-(Ce) and florencite-(Ce). This transformation was facilitated by progressive acidification of the weathering fluid, which is indicated by: 1) the increasing crystallinity of authigenic Fe-oxides and kaolinite, which led to REE desorption; 2) the textural evolution and increase in grain size of authigenic REE-phosphates from nanoscopic crystallites, to acicular needles, to micro-scale hexagonal prisms; 3) the late dissolution of REE-phosphates; and 4) the replacement of goethite by jarosite, whose sulfate component originated from the oxidation and weathering of proximal sulfide minerals. Alongside the depletion of pH-buffering carbonate minerals that are indicated by the preservation of calcite menisci, this sulfide dissolution also facilitated acid generation. Results illustrate how highly acidic weathering fluids might facilitate either REE mobilization or REE accumulation in regolith. High-grade REE accumulation under acidic supergene conditions is prioritized when the host-rock contains a significant source of depositional ligands (i.e., phosphate in the form of apatite) that can be readily leached during intense weathering. Exploration companies should therefore assay routinely for REEs in any heavily weathered phosphatic rock, due to the observed efficiency of phosphate minerals as geochemical traps for REE accumulation.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-024-01283-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Acidic oxides ; Acidification ; Aluminosilicates ; Aluminum silicates ; Apatite ; Calcite ; Carbonate minerals ; Carbonates ; Cerium ; Crystallites ; Crystals ; Dissolution ; Dissolving ; Earth and Environmental Science ; Earth Sciences ; Electron backscatter diffraction ; Electron microscopy ; Fluids ; Fluorescence ; Fluorescence microscopy ; Geology ; Goethite ; Grain size ; Iron ; Jarosite ; Kaolinite ; Leaching ; Ligands ; Microscopy ; Mineral exploration ; Mineral Resources ; Mineralogy ; Minerals ; Monazite ; Oxidation ; Phosphate minerals ; Phosphates ; Prisms ; Regolith ; Rocks ; Scanning electron microscopy ; Sulfides ; Sulphides ; Veins (geology) ; Weathering ; X rays ; X-ray diffraction ; X-ray fluorescence</subject><ispartof>Mineralium deposita, 2024-10, Vol.59 (7), p.1479-1503</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3</cites><orcidid>0000-0003-1510-5764 ; 0009-0005-3128-3722 ; 0000-0003-2247-2132 ; 0000-0002-4950-3640 ; 0000-0002-9324-1676 ; 0000-0001-6484-3291 ; 0000-0003-2232-9942 ; 0000-0003-4533-8008 ; 0000-0002-4519-7279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bamforth, Tobias G.</creatorcontrib><creatorcontrib>Xia, Fang</creatorcontrib><creatorcontrib>Tiddy, Caroline J.</creatorcontrib><creatorcontrib>González-Álvarez, Ignacio</creatorcontrib><creatorcontrib>Brugger, Joël</creatorcontrib><creatorcontrib>Hu, Si-Yu</creatorcontrib><creatorcontrib>Schoneveld, Louise E.</creatorcontrib><creatorcontrib>Pearce, Mark A.</creatorcontrib><creatorcontrib>Putnis, Andrew</creatorcontrib><title>High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backscatter diffraction to understand the controls that govern high-grade REE accumulation during periods of intense weathering. Petrological assessments indicate the transformation of an apatite-calcite-aluminosilicate-bearing protolith to a supergene assemblage of Fe-oxides, kaolinite and REE-phosphate minerals that include rhabdophane-(Ce), monazite-(Ce) and florencite-(Ce). This transformation was facilitated by progressive acidification of the weathering fluid, which is indicated by: 1) the increasing crystallinity of authigenic Fe-oxides and kaolinite, which led to REE desorption; 2) the textural evolution and increase in grain size of authigenic REE-phosphates from nanoscopic crystallites, to acicular needles, to micro-scale hexagonal prisms; 3) the late dissolution of REE-phosphates; and 4) the replacement of goethite by jarosite, whose sulfate component originated from the oxidation and weathering of proximal sulfide minerals. Alongside the depletion of pH-buffering carbonate minerals that are indicated by the preservation of calcite menisci, this sulfide dissolution also facilitated acid generation. Results illustrate how highly acidic weathering fluids might facilitate either REE mobilization or REE accumulation in regolith. High-grade REE accumulation under acidic supergene conditions is prioritized when the host-rock contains a significant source of depositional ligands (i.e., phosphate in the form of apatite) that can be readily leached during intense weathering. Exploration companies should therefore assay routinely for REEs in any heavily weathered phosphatic rock, due to the observed efficiency of phosphate minerals as geochemical traps for REE accumulation.</description><subject>Accumulation</subject><subject>Acidic oxides</subject><subject>Acidification</subject><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Apatite</subject><subject>Calcite</subject><subject>Carbonate minerals</subject><subject>Carbonates</subject><subject>Cerium</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electron backscatter diffraction</subject><subject>Electron microscopy</subject><subject>Fluids</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Geology</subject><subject>Goethite</subject><subject>Grain size</subject><subject>Iron</subject><subject>Jarosite</subject><subject>Kaolinite</subject><subject>Leaching</subject><subject>Ligands</subject><subject>Microscopy</subject><subject>Mineral exploration</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Monazite</subject><subject>Oxidation</subject><subject>Phosphate minerals</subject><subject>Phosphates</subject><subject>Prisms</subject><subject>Regolith</subject><subject>Rocks</subject><subject>Scanning electron microscopy</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Veins (geology)</subject><subject>Weathering</subject><subject>X rays</subject><subject>X-ray diffraction</subject><subject>X-ray fluorescence</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMuKFTEQhoMoeBx9AVcFbo0mnb7F3XA4zgwOCF7WoTpdOd1Dn3Sbi-Az-NJGW3DnqlLk-_-Cj7GXUryRQnRvoxCyarmoal4eveLVI3aQtaq47Nv2MTsIUb7rRvdP2bMYH4QQWtbiwH7ezueJ3wQcCT6dToDW5kteMM2rh9lDoPO6zGl6B3c-FjRFcGG9QMwbhTN5AlwShZ1fHaAH3MqWiIfZTvCdSgkmSBPBB9yyHxGOGS6zp9fwec1pguscU8BlxufsicMl0ou_84p9fX_6crzl9x9v7o7X9xyV6hJvR2kHcuM4SNGPtWibBpUbrbWEvWgG0kPlRK-wboemrjrtcLCdstiqnpR26oq92nu3sH7LFJN5WHPw5aRRxabWbad1oaqdsmGNMZAzW5gvGH4YKcxv6WaXbop080e6qUpI7aFYYH-m8K_6P6lf_-uGvw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bamforth, Tobias G.</creator><creator>Xia, Fang</creator><creator>Tiddy, Caroline J.</creator><creator>González-Álvarez, Ignacio</creator><creator>Brugger, Joël</creator><creator>Hu, Si-Yu</creator><creator>Schoneveld, Louise E.</creator><creator>Pearce, Mark A.</creator><creator>Putnis, Andrew</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-1510-5764</orcidid><orcidid>https://orcid.org/0009-0005-3128-3722</orcidid><orcidid>https://orcid.org/0000-0003-2247-2132</orcidid><orcidid>https://orcid.org/0000-0002-4950-3640</orcidid><orcidid>https://orcid.org/0000-0002-9324-1676</orcidid><orcidid>https://orcid.org/0000-0001-6484-3291</orcidid><orcidid>https://orcid.org/0000-0003-2232-9942</orcidid><orcidid>https://orcid.org/0000-0003-4533-8008</orcidid><orcidid>https://orcid.org/0000-0002-4519-7279</orcidid></search><sort><creationdate>20241001</creationdate><title>High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia</title><author>Bamforth, Tobias G. ; Xia, Fang ; Tiddy, Caroline J. ; González-Álvarez, Ignacio ; Brugger, Joël ; Hu, Si-Yu ; Schoneveld, Louise E. ; Pearce, Mark A. ; Putnis, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Acidic oxides</topic><topic>Acidification</topic><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Apatite</topic><topic>Calcite</topic><topic>Carbonate minerals</topic><topic>Carbonates</topic><topic>Cerium</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electron backscatter diffraction</topic><topic>Electron microscopy</topic><topic>Fluids</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Geology</topic><topic>Goethite</topic><topic>Grain size</topic><topic>Iron</topic><topic>Jarosite</topic><topic>Kaolinite</topic><topic>Leaching</topic><topic>Ligands</topic><topic>Microscopy</topic><topic>Mineral exploration</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Monazite</topic><topic>Oxidation</topic><topic>Phosphate minerals</topic><topic>Phosphates</topic><topic>Prisms</topic><topic>Regolith</topic><topic>Rocks</topic><topic>Scanning electron microscopy</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Veins (geology)</topic><topic>Weathering</topic><topic>X rays</topic><topic>X-ray diffraction</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bamforth, Tobias G.</creatorcontrib><creatorcontrib>Xia, Fang</creatorcontrib><creatorcontrib>Tiddy, Caroline J.</creatorcontrib><creatorcontrib>González-Álvarez, Ignacio</creatorcontrib><creatorcontrib>Brugger, Joël</creatorcontrib><creatorcontrib>Hu, Si-Yu</creatorcontrib><creatorcontrib>Schoneveld, Louise E.</creatorcontrib><creatorcontrib>Pearce, Mark A.</creatorcontrib><creatorcontrib>Putnis, Andrew</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bamforth, Tobias G.</au><au>Xia, Fang</au><au>Tiddy, Caroline J.</au><au>González-Álvarez, Ignacio</au><au>Brugger, Joël</au><au>Hu, Si-Yu</au><au>Schoneveld, Louise E.</au><au>Pearce, Mark A.</au><au>Putnis, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>59</volume><issue>7</issue><spage>1479</spage><epage>1503</epage><pages>1479-1503</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>The stratiform and vein-hosted Kapunda Cu deposit in South Australia contains a saprolitized hydrothermal vein with 12.37 wt.% total rare earth oxide (TREO). The vein was analyzed by X-ray diffraction, scanning electron microscopy, synchrotron-based X-ray fluorescence microscopy and electron backscatter diffraction to understand the controls that govern high-grade REE accumulation during periods of intense weathering. Petrological assessments indicate the transformation of an apatite-calcite-aluminosilicate-bearing protolith to a supergene assemblage of Fe-oxides, kaolinite and REE-phosphate minerals that include rhabdophane-(Ce), monazite-(Ce) and florencite-(Ce). This transformation was facilitated by progressive acidification of the weathering fluid, which is indicated by: 1) the increasing crystallinity of authigenic Fe-oxides and kaolinite, which led to REE desorption; 2) the textural evolution and increase in grain size of authigenic REE-phosphates from nanoscopic crystallites, to acicular needles, to micro-scale hexagonal prisms; 3) the late dissolution of REE-phosphates; and 4) the replacement of goethite by jarosite, whose sulfate component originated from the oxidation and weathering of proximal sulfide minerals. Alongside the depletion of pH-buffering carbonate minerals that are indicated by the preservation of calcite menisci, this sulfide dissolution also facilitated acid generation. Results illustrate how highly acidic weathering fluids might facilitate either REE mobilization or REE accumulation in regolith. High-grade REE accumulation under acidic supergene conditions is prioritized when the host-rock contains a significant source of depositional ligands (i.e., phosphate in the form of apatite) that can be readily leached during intense weathering. Exploration companies should therefore assay routinely for REEs in any heavily weathered phosphatic rock, due to the observed efficiency of phosphate minerals as geochemical traps for REE accumulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-024-01283-2</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1510-5764</orcidid><orcidid>https://orcid.org/0009-0005-3128-3722</orcidid><orcidid>https://orcid.org/0000-0003-2247-2132</orcidid><orcidid>https://orcid.org/0000-0002-4950-3640</orcidid><orcidid>https://orcid.org/0000-0002-9324-1676</orcidid><orcidid>https://orcid.org/0000-0001-6484-3291</orcidid><orcidid>https://orcid.org/0000-0003-2232-9942</orcidid><orcidid>https://orcid.org/0000-0003-4533-8008</orcidid><orcidid>https://orcid.org/0000-0002-4519-7279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2024-10, Vol.59 (7), p.1479-1503
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_3100996799
source Springer Link
subjects Accumulation
Acidic oxides
Acidification
Aluminosilicates
Aluminum silicates
Apatite
Calcite
Carbonate minerals
Carbonates
Cerium
Crystallites
Crystals
Dissolution
Dissolving
Earth and Environmental Science
Earth Sciences
Electron backscatter diffraction
Electron microscopy
Fluids
Fluorescence
Fluorescence microscopy
Geology
Goethite
Grain size
Iron
Jarosite
Kaolinite
Leaching
Ligands
Microscopy
Mineral exploration
Mineral Resources
Mineralogy
Minerals
Monazite
Oxidation
Phosphate minerals
Phosphates
Prisms
Regolith
Rocks
Scanning electron microscopy
Sulfides
Sulphides
Veins (geology)
Weathering
X rays
X-ray diffraction
X-ray fluorescence
title High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine, South Australia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Grade%20REE%20accumulation%20in%20regolith:%20Insights%20from%20supergene%20alteration%20of%20an%20apatite-rich%20vein%20at%20the%20Kapunda%20Cu%20mine,%20South%20Australia&rft.jtitle=Mineralium%20deposita&rft.au=Bamforth,%20Tobias%20G.&rft.date=2024-10-01&rft.volume=59&rft.issue=7&rft.spage=1479&rft.epage=1503&rft.pages=1479-1503&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-024-01283-2&rft_dat=%3Cproquest_cross%3E3100996799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-6d1cbefddb108d40655a3fdcccea805be9b2f083a46b54279fabc73ca638e39f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100996799&rft_id=info:pmid/&rfr_iscdi=true