Loading…
Cyber-Physical Distribution Systems Resilience Against Cyberattacks via a Remediation Framework Based on Static VAR Compensators (SVCs)
This paper proposes a framework to optimally employ static VAR compensators (SVCs) within a customized reconfiguration of system topology, leading to remediation of voltage violations caused by false data injection (FDI) cyberattacks targeting smart distribution grids. The designed framework contain...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.119633-119646 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a framework to optimally employ static VAR compensators (SVCs) within a customized reconfiguration of system topology, leading to remediation of voltage violations caused by false data injection (FDI) cyberattacks targeting smart distribution grids. The designed framework contains formulations associated with planning and operation phases. In the planning phase, the scrutinized system, modified by photovoltaic (PV) units, is enhanced by optimally allocating static VAR compensators (SVCs) to keep the unity power factor throughout the system. Then, distribution system operator (DSO), being in attacker's shoe, examines relevant cyberattack scenarios leading to voltage violations within the distribution system. Finally, in the operation phase, DSO takes advantage of the optimally planned SVCs to identify proper vectors (i.e., remedial actions) to cope with such potential scenarios of cyberattacks. These (to be recognized) vectors are associated with the variable shunt susceptance of the mentioned SVCs, which will be identified by solving a customized distribution feeder reconfiguration (DFR) problem in the operation phase. The main objective of the customized DFR is to maximize the contributions of SVCs through enhancing the voltage profile of the targeted system. This will enable DSO to mitigate the negative impacts of the FDI attacks and recover the voltage profile of the smart distribution network. The effectiveness of the proposed RAS is validated on three different smart test systems (i.e., 33-bus, 95-bus, and 136-bus systems), which are modified to contain SVC components and renewable-based distributed generation (DG) units. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2024.3450631 |