Loading…
Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging
This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined w...
Saved in:
Published in: | IEEE transactions on industrial informatics 2024-09, Vol.20 (9), p.11213-11223 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3 |
container_end_page | 11223 |
container_issue | 9 |
container_start_page | 11213 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | Lee, Sangyoon Choi, Dae-Hyun |
description | This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined with an optimization-based reward function is employed to perform the following two tasks: 1) an increase in the EVCS profit via the selection of charging poles for profitable charging scheduling of the reserved EVs based on ESS operation and 2) enhancement of the robustness to adversarial perturbations. In Stage 2, a computationally efficient machine unlearning method is adopted to protect the data privacy of the reserved EVs by completely erasing their traces of private data during unlearning. The simulation results demonstrate the advantages of the proposed framework in terms of profitable charging pole utilization, robustness against adversarial perturbations, accuracy of the unlearned EV charging model, and training time. |
doi_str_mv | 10.1109/TII.2024.3396524 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3101349558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10541863</ieee_id><sourcerecordid>3101349558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4CnrcmmXxsjlJqLRQr2HoN2XS23bLu1uz24H9vSit4mg_emzf8CLnnbMQ5s0_L2WwkmJAjAKuVkBdkwK3kGWOKXaZeKZ6BYHBNbrpuxxgYBnZA3uboY1M1G-qbNV019d_Yt3Sxx-h7pO-xLaveFzXSDwyHiHRSY-hjFegnbquQ9uOtj5tkuyVXpa87vDvXIVm9TJbj12y-mM7Gz_MscKP6DJTWAFAoaayRwQa75qYwFg0oy60OZS7zoBV4XSAEawQwKYQMeVkKXRQwJI-nu_vYfh-w692uPcQmRTrgjIO0SuVJxU6qENuui1i6fay-fPxxnLkjNZeouSM1d6aWLA8nS4WI_-RK8jy9_AueEWbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101349558</pqid></control><display><type>article</type><title>Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Sangyoon ; Choi, Dae-Hyun</creator><creatorcontrib>Lee, Sangyoon ; Choi, Dae-Hyun</creatorcontrib><description>This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined with an optimization-based reward function is employed to perform the following two tasks: 1) an increase in the EVCS profit via the selection of charging poles for profitable charging scheduling of the reserved EVs based on ESS operation and 2) enhancement of the robustness to adversarial perturbations. In Stage 2, a computationally efficient machine unlearning method is adopted to protect the data privacy of the reserved EVs by completely erasing their traces of private data during unlearning. The simulation results demonstrate the advantages of the proposed framework in terms of profitable charging pole utilization, robustness against adversarial perturbations, accuracy of the unlearned EV charging model, and training time.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3396524</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Data privacy ; Electric vehicle (EV) ; Electric vehicle charging ; electric vehicle charging scheduling ; Learning ; machine unlearning (MuL) ; Perturbation ; Perturbation methods ; Privacy ; privacy preservation ; Q-learning ; robust deep reinforcement learning ; Robustness ; Storage systems ; Task scheduling ; Vehicle-to-grid</subject><ispartof>IEEE transactions on industrial informatics, 2024-09, Vol.20 (9), p.11213-11223</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3</cites><orcidid>0000-0002-0736-2325 ; 0000-0002-9248-9522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10541863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lee, Sangyoon</creatorcontrib><creatorcontrib>Choi, Dae-Hyun</creatorcontrib><title>Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined with an optimization-based reward function is employed to perform the following two tasks: 1) an increase in the EVCS profit via the selection of charging poles for profitable charging scheduling of the reserved EVs based on ESS operation and 2) enhancement of the robustness to adversarial perturbations. In Stage 2, a computationally efficient machine unlearning method is adopted to protect the data privacy of the reserved EVs by completely erasing their traces of private data during unlearning. The simulation results demonstrate the advantages of the proposed framework in terms of profitable charging pole utilization, robustness against adversarial perturbations, accuracy of the unlearned EV charging model, and training time.</description><subject>Data models</subject><subject>Data privacy</subject><subject>Electric vehicle (EV)</subject><subject>Electric vehicle charging</subject><subject>electric vehicle charging scheduling</subject><subject>Learning</subject><subject>machine unlearning (MuL)</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>Q-learning</subject><subject>robust deep reinforcement learning</subject><subject>Robustness</subject><subject>Storage systems</subject><subject>Task scheduling</subject><subject>Vehicle-to-grid</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWKt3Dx4CnrcmmXxsjlJqLRQr2HoN2XS23bLu1uz24H9vSit4mg_emzf8CLnnbMQ5s0_L2WwkmJAjAKuVkBdkwK3kGWOKXaZeKZ6BYHBNbrpuxxgYBnZA3uboY1M1G-qbNV019d_Yt3Sxx-h7pO-xLaveFzXSDwyHiHRSY-hjFegnbquQ9uOtj5tkuyVXpa87vDvXIVm9TJbj12y-mM7Gz_MscKP6DJTWAFAoaayRwQa75qYwFg0oy60OZS7zoBV4XSAEawQwKYQMeVkKXRQwJI-nu_vYfh-w692uPcQmRTrgjIO0SuVJxU6qENuui1i6fay-fPxxnLkjNZeouSM1d6aWLA8nS4WI_-RK8jy9_AueEWbc</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lee, Sangyoon</creator><creator>Choi, Dae-Hyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0736-2325</orcidid><orcidid>https://orcid.org/0000-0002-9248-9522</orcidid></search><sort><creationdate>20240901</creationdate><title>Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging</title><author>Lee, Sangyoon ; Choi, Dae-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Data privacy</topic><topic>Electric vehicle (EV)</topic><topic>Electric vehicle charging</topic><topic>electric vehicle charging scheduling</topic><topic>Learning</topic><topic>machine unlearning (MuL)</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>Q-learning</topic><topic>robust deep reinforcement learning</topic><topic>Robustness</topic><topic>Storage systems</topic><topic>Task scheduling</topic><topic>Vehicle-to-grid</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangyoon</creatorcontrib><creatorcontrib>Choi, Dae-Hyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sangyoon</au><au>Choi, Dae-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>9</issue><spage>11213</spage><epage>11223</epage><pages>11213-11223</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined with an optimization-based reward function is employed to perform the following two tasks: 1) an increase in the EVCS profit via the selection of charging poles for profitable charging scheduling of the reserved EVs based on ESS operation and 2) enhancement of the robustness to adversarial perturbations. In Stage 2, a computationally efficient machine unlearning method is adopted to protect the data privacy of the reserved EVs by completely erasing their traces of private data during unlearning. The simulation results demonstrate the advantages of the proposed framework in terms of profitable charging pole utilization, robustness against adversarial perturbations, accuracy of the unlearned EV charging model, and training time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3396524</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0736-2325</orcidid><orcidid>https://orcid.org/0000-0002-9248-9522</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-09, Vol.20 (9), p.11213-11223 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_3101349558 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Data models Data privacy Electric vehicle (EV) Electric vehicle charging electric vehicle charging scheduling Learning machine unlearning (MuL) Perturbation Perturbation methods Privacy privacy preservation Q-learning robust deep reinforcement learning Robustness Storage systems Task scheduling Vehicle-to-grid |
title | Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20and%20Unlearning%20to%20Operate%20Profitable%20Secure%20Electric%20Vehicle%20Charging&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lee,%20Sangyoon&rft.date=2024-09-01&rft.volume=20&rft.issue=9&rft.spage=11213&rft.epage=11223&rft.pages=11213-11223&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3396524&rft_dat=%3Cproquest_cross%3E3101349558%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101349558&rft_id=info:pmid/&rft_ieee_id=10541863&rfr_iscdi=true |