Loading…

Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging

This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined w...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2024-09, Vol.20 (9), p.11213-11223
Main Authors: Lee, Sangyoon, Choi, Dae-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3
container_end_page 11223
container_issue 9
container_start_page 11213
container_title IEEE transactions on industrial informatics
container_volume 20
creator Lee, Sangyoon
Choi, Dae-Hyun
description This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined with an optimization-based reward function is employed to perform the following two tasks: 1) an increase in the EVCS profit via the selection of charging poles for profitable charging scheduling of the reserved EVs based on ESS operation and 2) enhancement of the robustness to adversarial perturbations. In Stage 2, a computationally efficient machine unlearning method is adopted to protect the data privacy of the reserved EVs by completely erasing their traces of private data during unlearning. The simulation results demonstrate the advantages of the proposed framework in terms of profitable charging pole utilization, robustness against adversarial perturbations, accuracy of the unlearned EV charging model, and training time.
doi_str_mv 10.1109/TII.2024.3396524
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3101349558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10541863</ieee_id><sourcerecordid>3101349558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4CnrcmmXxsjlJqLRQr2HoN2XS23bLu1uz24H9vSit4mg_emzf8CLnnbMQ5s0_L2WwkmJAjAKuVkBdkwK3kGWOKXaZeKZ6BYHBNbrpuxxgYBnZA3uboY1M1G-qbNV019d_Yt3Sxx-h7pO-xLaveFzXSDwyHiHRSY-hjFegnbquQ9uOtj5tkuyVXpa87vDvXIVm9TJbj12y-mM7Gz_MscKP6DJTWAFAoaayRwQa75qYwFg0oy60OZS7zoBV4XSAEawQwKYQMeVkKXRQwJI-nu_vYfh-w692uPcQmRTrgjIO0SuVJxU6qENuui1i6fay-fPxxnLkjNZeouSM1d6aWLA8nS4WI_-RK8jy9_AueEWbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101349558</pqid></control><display><type>article</type><title>Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Sangyoon ; Choi, Dae-Hyun</creator><creatorcontrib>Lee, Sangyoon ; Choi, Dae-Hyun</creatorcontrib><description>This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined with an optimization-based reward function is employed to perform the following two tasks: 1) an increase in the EVCS profit via the selection of charging poles for profitable charging scheduling of the reserved EVs based on ESS operation and 2) enhancement of the robustness to adversarial perturbations. In Stage 2, a computationally efficient machine unlearning method is adopted to protect the data privacy of the reserved EVs by completely erasing their traces of private data during unlearning. The simulation results demonstrate the advantages of the proposed framework in terms of profitable charging pole utilization, robustness against adversarial perturbations, accuracy of the unlearned EV charging model, and training time.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3396524</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Data privacy ; Electric vehicle (EV) ; Electric vehicle charging ; electric vehicle charging scheduling ; Learning ; machine unlearning (MuL) ; Perturbation ; Perturbation methods ; Privacy ; privacy preservation ; Q-learning ; robust deep reinforcement learning ; Robustness ; Storage systems ; Task scheduling ; Vehicle-to-grid</subject><ispartof>IEEE transactions on industrial informatics, 2024-09, Vol.20 (9), p.11213-11223</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3</cites><orcidid>0000-0002-0736-2325 ; 0000-0002-9248-9522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10541863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lee, Sangyoon</creatorcontrib><creatorcontrib>Choi, Dae-Hyun</creatorcontrib><title>Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined with an optimization-based reward function is employed to perform the following two tasks: 1) an increase in the EVCS profit via the selection of charging poles for profitable charging scheduling of the reserved EVs based on ESS operation and 2) enhancement of the robustness to adversarial perturbations. In Stage 2, a computationally efficient machine unlearning method is adopted to protect the data privacy of the reserved EVs by completely erasing their traces of private data during unlearning. The simulation results demonstrate the advantages of the proposed framework in terms of profitable charging pole utilization, robustness against adversarial perturbations, accuracy of the unlearned EV charging model, and training time.</description><subject>Data models</subject><subject>Data privacy</subject><subject>Electric vehicle (EV)</subject><subject>Electric vehicle charging</subject><subject>electric vehicle charging scheduling</subject><subject>Learning</subject><subject>machine unlearning (MuL)</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>Q-learning</subject><subject>robust deep reinforcement learning</subject><subject>Robustness</subject><subject>Storage systems</subject><subject>Task scheduling</subject><subject>Vehicle-to-grid</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWKt3Dx4CnrcmmXxsjlJqLRQr2HoN2XS23bLu1uz24H9vSit4mg_emzf8CLnnbMQ5s0_L2WwkmJAjAKuVkBdkwK3kGWOKXaZeKZ6BYHBNbrpuxxgYBnZA3uboY1M1G-qbNV019d_Yt3Sxx-h7pO-xLaveFzXSDwyHiHRSY-hjFegnbquQ9uOtj5tkuyVXpa87vDvXIVm9TJbj12y-mM7Gz_MscKP6DJTWAFAoaayRwQa75qYwFg0oy60OZS7zoBV4XSAEawQwKYQMeVkKXRQwJI-nu_vYfh-w692uPcQmRTrgjIO0SuVJxU6qENuui1i6fay-fPxxnLkjNZeouSM1d6aWLA8nS4WI_-RK8jy9_AueEWbc</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lee, Sangyoon</creator><creator>Choi, Dae-Hyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0736-2325</orcidid><orcidid>https://orcid.org/0000-0002-9248-9522</orcidid></search><sort><creationdate>20240901</creationdate><title>Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging</title><author>Lee, Sangyoon ; Choi, Dae-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Data privacy</topic><topic>Electric vehicle (EV)</topic><topic>Electric vehicle charging</topic><topic>electric vehicle charging scheduling</topic><topic>Learning</topic><topic>machine unlearning (MuL)</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>Q-learning</topic><topic>robust deep reinforcement learning</topic><topic>Robustness</topic><topic>Storage systems</topic><topic>Task scheduling</topic><topic>Vehicle-to-grid</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangyoon</creatorcontrib><creatorcontrib>Choi, Dae-Hyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sangyoon</au><au>Choi, Dae-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>9</issue><spage>11213</spage><epage>11223</epage><pages>11213-11223</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This study proposes a two-stage learning and unlearning framework that ensures profitable and privacy-preserving charging at electric vehicle charging stations (EVCSs) integrated with solar photovoltaic and energy storage systems (ESSs). In Stage 1, a robust dueling deep Q -network method combined with an optimization-based reward function is employed to perform the following two tasks: 1) an increase in the EVCS profit via the selection of charging poles for profitable charging scheduling of the reserved EVs based on ESS operation and 2) enhancement of the robustness to adversarial perturbations. In Stage 2, a computationally efficient machine unlearning method is adopted to protect the data privacy of the reserved EVs by completely erasing their traces of private data during unlearning. The simulation results demonstrate the advantages of the proposed framework in terms of profitable charging pole utilization, robustness against adversarial perturbations, accuracy of the unlearned EV charging model, and training time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3396524</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0736-2325</orcidid><orcidid>https://orcid.org/0000-0002-9248-9522</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-09, Vol.20 (9), p.11213-11223
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_3101349558
source IEEE Electronic Library (IEL) Journals
subjects Data models
Data privacy
Electric vehicle (EV)
Electric vehicle charging
electric vehicle charging scheduling
Learning
machine unlearning (MuL)
Perturbation
Perturbation methods
Privacy
privacy preservation
Q-learning
robust deep reinforcement learning
Robustness
Storage systems
Task scheduling
Vehicle-to-grid
title Learning and Unlearning to Operate Profitable Secure Electric Vehicle Charging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20and%20Unlearning%20to%20Operate%20Profitable%20Secure%20Electric%20Vehicle%20Charging&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lee,%20Sangyoon&rft.date=2024-09-01&rft.volume=20&rft.issue=9&rft.spage=11213&rft.epage=11223&rft.pages=11213-11223&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3396524&rft_dat=%3Cproquest_cross%3E3101349558%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c175t-3566333b547974c9c9d17b79e7359196cf848c653a6be3c972304224c8ff26bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101349558&rft_id=info:pmid/&rft_ieee_id=10541863&rfr_iscdi=true