Loading…
Disjoint Compatibility via Graph Classes
Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Oswin Aichholzer Obmann, Julia Paták, Pavel Perz, Daniel Tkadlec, Josef Vogtenhuber, Birgit |
description | Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \(M_1\) and \(M_2\) on \(S\) (which do not need to be disjoint nor compatible) are \emph{disjoint \(\mathcal{H}\)-compatible} if there exists a drawing in \(\mathcal{H}\) which is disjoint compatible to both \(M_1\) and \(M_2\) In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint \(\mathcal{H}\)-compatible. We study the diameter of this graph when \(\mathcal{H}\) is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3101377907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101377907</sourcerecordid><originalsourceid>FETCH-proquest_journals_31013779073</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcMkszsrPzCtRcM7PLUgsyUzKzMksqVQoy0xUcC9KLMhQcM5JLC5OLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQwNDY3NzSwNzY-JUAQCpADAX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101377907</pqid></control><display><type>article</type><title>Disjoint Compatibility via Graph Classes</title><source>Publicly Available Content Database</source><creator>Oswin Aichholzer ; Obmann, Julia ; Paták, Pavel ; Perz, Daniel ; Tkadlec, Josef ; Vogtenhuber, Birgit</creator><creatorcontrib>Oswin Aichholzer ; Obmann, Julia ; Paták, Pavel ; Perz, Daniel ; Tkadlec, Josef ; Vogtenhuber, Birgit</creatorcontrib><description>Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \(M_1\) and \(M_2\) on \(S\) (which do not need to be disjoint nor compatible) are \emph{disjoint \(\mathcal{H}\)-compatible} if there exists a drawing in \(\mathcal{H}\) which is disjoint compatible to both \(M_1\) and \(M_2\) In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint \(\mathcal{H}\)-compatible. We study the diameter of this graph when \(\mathcal{H}\) is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Compatibility ; Graph theory ; Trees (mathematics)</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3101377907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Oswin Aichholzer</creatorcontrib><creatorcontrib>Obmann, Julia</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Perz, Daniel</creatorcontrib><creatorcontrib>Tkadlec, Josef</creatorcontrib><creatorcontrib>Vogtenhuber, Birgit</creatorcontrib><title>Disjoint Compatibility via Graph Classes</title><title>arXiv.org</title><description>Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \(M_1\) and \(M_2\) on \(S\) (which do not need to be disjoint nor compatible) are \emph{disjoint \(\mathcal{H}\)-compatible} if there exists a drawing in \(\mathcal{H}\) which is disjoint compatible to both \(M_1\) and \(M_2\) In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint \(\mathcal{H}\)-compatible. We study the diameter of this graph when \(\mathcal{H}\) is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.</description><subject>Apexes</subject><subject>Compatibility</subject><subject>Graph theory</subject><subject>Trees (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcMkszsrPzCtRcM7PLUgsyUzKzMksqVQoy0xUcC9KLMhQcM5JLC5OLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQwNDY3NzSwNzY-JUAQCpADAX</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Oswin Aichholzer</creator><creator>Obmann, Julia</creator><creator>Paták, Pavel</creator><creator>Perz, Daniel</creator><creator>Tkadlec, Josef</creator><creator>Vogtenhuber, Birgit</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240905</creationdate><title>Disjoint Compatibility via Graph Classes</title><author>Oswin Aichholzer ; Obmann, Julia ; Paták, Pavel ; Perz, Daniel ; Tkadlec, Josef ; Vogtenhuber, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31013779073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Compatibility</topic><topic>Graph theory</topic><topic>Trees (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Oswin Aichholzer</creatorcontrib><creatorcontrib>Obmann, Julia</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Perz, Daniel</creatorcontrib><creatorcontrib>Tkadlec, Josef</creatorcontrib><creatorcontrib>Vogtenhuber, Birgit</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oswin Aichholzer</au><au>Obmann, Julia</au><au>Paták, Pavel</au><au>Perz, Daniel</au><au>Tkadlec, Josef</au><au>Vogtenhuber, Birgit</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Disjoint Compatibility via Graph Classes</atitle><jtitle>arXiv.org</jtitle><date>2024-09-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \(M_1\) and \(M_2\) on \(S\) (which do not need to be disjoint nor compatible) are \emph{disjoint \(\mathcal{H}\)-compatible} if there exists a drawing in \(\mathcal{H}\) which is disjoint compatible to both \(M_1\) and \(M_2\) In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint \(\mathcal{H}\)-compatible. We study the diameter of this graph when \(\mathcal{H}\) is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3101377907 |
source | Publicly Available Content Database |
subjects | Apexes Compatibility Graph theory Trees (mathematics) |
title | Disjoint Compatibility via Graph Classes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Disjoint%20Compatibility%20via%20Graph%20Classes&rft.jtitle=arXiv.org&rft.au=Oswin%20Aichholzer&rft.date=2024-09-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3101377907%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31013779073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101377907&rft_id=info:pmid/&rfr_iscdi=true |