Loading…

Disjoint Compatibility via Graph Classes

Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Oswin Aichholzer, Obmann, Julia, Paták, Pavel, Perz, Daniel, Tkadlec, Josef, Vogtenhuber, Birgit
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Oswin Aichholzer
Obmann, Julia
Paták, Pavel
Perz, Daniel
Tkadlec, Josef
Vogtenhuber, Birgit
description Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \(M_1\) and \(M_2\) on \(S\) (which do not need to be disjoint nor compatible) are \emph{disjoint \(\mathcal{H}\)-compatible} if there exists a drawing in \(\mathcal{H}\) which is disjoint compatible to both \(M_1\) and \(M_2\) In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint \(\mathcal{H}\)-compatible. We study the diameter of this graph when \(\mathcal{H}\) is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3101377907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101377907</sourcerecordid><originalsourceid>FETCH-proquest_journals_31013779073</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcMkszsrPzCtRcM7PLUgsyUzKzMksqVQoy0xUcC9KLMhQcM5JLC5OLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQwNDY3NzSwNzY-JUAQCpADAX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101377907</pqid></control><display><type>article</type><title>Disjoint Compatibility via Graph Classes</title><source>Publicly Available Content Database</source><creator>Oswin Aichholzer ; Obmann, Julia ; Paták, Pavel ; Perz, Daniel ; Tkadlec, Josef ; Vogtenhuber, Birgit</creator><creatorcontrib>Oswin Aichholzer ; Obmann, Julia ; Paták, Pavel ; Perz, Daniel ; Tkadlec, Josef ; Vogtenhuber, Birgit</creatorcontrib><description>Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \(M_1\) and \(M_2\) on \(S\) (which do not need to be disjoint nor compatible) are \emph{disjoint \(\mathcal{H}\)-compatible} if there exists a drawing in \(\mathcal{H}\) which is disjoint compatible to both \(M_1\) and \(M_2\) In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint \(\mathcal{H}\)-compatible. We study the diameter of this graph when \(\mathcal{H}\) is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Compatibility ; Graph theory ; Trees (mathematics)</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3101377907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Oswin Aichholzer</creatorcontrib><creatorcontrib>Obmann, Julia</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Perz, Daniel</creatorcontrib><creatorcontrib>Tkadlec, Josef</creatorcontrib><creatorcontrib>Vogtenhuber, Birgit</creatorcontrib><title>Disjoint Compatibility via Graph Classes</title><title>arXiv.org</title><description>Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \(M_1\) and \(M_2\) on \(S\) (which do not need to be disjoint nor compatible) are \emph{disjoint \(\mathcal{H}\)-compatible} if there exists a drawing in \(\mathcal{H}\) which is disjoint compatible to both \(M_1\) and \(M_2\) In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint \(\mathcal{H}\)-compatible. We study the diameter of this graph when \(\mathcal{H}\) is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.</description><subject>Apexes</subject><subject>Compatibility</subject><subject>Graph theory</subject><subject>Trees (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcMkszsrPzCtRcM7PLUgsyUzKzMksqVQoy0xUcC9KLMhQcM5JLC5OLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQwNDY3NzSwNzY-JUAQCpADAX</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Oswin Aichholzer</creator><creator>Obmann, Julia</creator><creator>Paták, Pavel</creator><creator>Perz, Daniel</creator><creator>Tkadlec, Josef</creator><creator>Vogtenhuber, Birgit</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240905</creationdate><title>Disjoint Compatibility via Graph Classes</title><author>Oswin Aichholzer ; Obmann, Julia ; Paták, Pavel ; Perz, Daniel ; Tkadlec, Josef ; Vogtenhuber, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31013779073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Compatibility</topic><topic>Graph theory</topic><topic>Trees (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Oswin Aichholzer</creatorcontrib><creatorcontrib>Obmann, Julia</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Perz, Daniel</creatorcontrib><creatorcontrib>Tkadlec, Josef</creatorcontrib><creatorcontrib>Vogtenhuber, Birgit</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oswin Aichholzer</au><au>Obmann, Julia</au><au>Paták, Pavel</au><au>Perz, Daniel</au><au>Tkadlec, Josef</au><au>Vogtenhuber, Birgit</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Disjoint Compatibility via Graph Classes</atitle><jtitle>arXiv.org</jtitle><date>2024-09-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let \(S\) be a convex point set of \(2n \geq 10\) points and let \(\mathcal{H}\) be a family of plane drawings on \(S\). Two plane perfect matchings \(M_1\) and \(M_2\) on \(S\) (which do not need to be disjoint nor compatible) are \emph{disjoint \(\mathcal{H}\)-compatible} if there exists a drawing in \(\mathcal{H}\) which is disjoint compatible to both \(M_1\) and \(M_2\) In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint \(\mathcal{H}\)-compatible. We study the diameter of this graph when \(\mathcal{H}\) is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3101377907
source Publicly Available Content Database
subjects Apexes
Compatibility
Graph theory
Trees (mathematics)
title Disjoint Compatibility via Graph Classes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Disjoint%20Compatibility%20via%20Graph%20Classes&rft.jtitle=arXiv.org&rft.au=Oswin%20Aichholzer&rft.date=2024-09-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3101377907%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31013779073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101377907&rft_id=info:pmid/&rfr_iscdi=true