Loading…

On Oriented Diameter of Power Graphs

In this paper, we study the oriented diameter of power graphs of groups. We show that a \(2\)-edge connected power graph of a finite group has oriented diameter at most \(4\). We prove that the power graph of the cyclic group of order \(n\) has oriented diameter \(2\) for all \(n\neq 1,2,4,6\). For...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Benson, Deepu, Das, Bireswar, Dey, Dipan, Ghosh, Jinia
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Benson, Deepu
Das, Bireswar
Dey, Dipan
Ghosh, Jinia
description In this paper, we study the oriented diameter of power graphs of groups. We show that a \(2\)-edge connected power graph of a finite group has oriented diameter at most \(4\). We prove that the power graph of the cyclic group of order \(n\) has oriented diameter \(2\) for all \(n\neq 1,2,4,6\). For non-cyclic finite nilpotent groups, we show that the oriented diameter of corresponding power graphs is at least \(3\). Moreover, we provide necessary and sufficient conditions for the oriented diameter of \(2\)-edge connected power graphs of finite non-cyclic nilpotent groups to be either \(3\) or \(4\). This, in turn, gives an algorithm for computing the oriented diameter of the power graph of a given nilpotent group that runs in time polynomial in the size of the group.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3101393232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101393232</sourcerecordid><originalsourceid>FETCH-proquest_journals_31013932323</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8c9T8C_KTM0rSU1RcMlMzE0tSS1SyE9TCMgvBzLcixILMop5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2NDA0NjS2AgIiVMFAIV6Leg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101393232</pqid></control><display><type>article</type><title>On Oriented Diameter of Power Graphs</title><source>Publicly Available Content Database</source><creator>Benson, Deepu ; Das, Bireswar ; Dey, Dipan ; Ghosh, Jinia</creator><creatorcontrib>Benson, Deepu ; Das, Bireswar ; Dey, Dipan ; Ghosh, Jinia</creatorcontrib><description>In this paper, we study the oriented diameter of power graphs of groups. We show that a \(2\)-edge connected power graph of a finite group has oriented diameter at most \(4\). We prove that the power graph of the cyclic group of order \(n\) has oriented diameter \(2\) for all \(n\neq 1,2,4,6\). For non-cyclic finite nilpotent groups, we show that the oriented diameter of corresponding power graphs is at least \(3\). Moreover, we provide necessary and sufficient conditions for the oriented diameter of \(2\)-edge connected power graphs of finite non-cyclic nilpotent groups to be either \(3\) or \(4\). This, in turn, gives an algorithm for computing the oriented diameter of the power graph of a given nilpotent group that runs in time polynomial in the size of the group.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Completeness ; Graphs ; Group theory ; Polynomials</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3101393232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Benson, Deepu</creatorcontrib><creatorcontrib>Das, Bireswar</creatorcontrib><creatorcontrib>Dey, Dipan</creatorcontrib><creatorcontrib>Ghosh, Jinia</creatorcontrib><title>On Oriented Diameter of Power Graphs</title><title>arXiv.org</title><description>In this paper, we study the oriented diameter of power graphs of groups. We show that a \(2\)-edge connected power graph of a finite group has oriented diameter at most \(4\). We prove that the power graph of the cyclic group of order \(n\) has oriented diameter \(2\) for all \(n\neq 1,2,4,6\). For non-cyclic finite nilpotent groups, we show that the oriented diameter of corresponding power graphs is at least \(3\). Moreover, we provide necessary and sufficient conditions for the oriented diameter of \(2\)-edge connected power graphs of finite non-cyclic nilpotent groups to be either \(3\) or \(4\). This, in turn, gives an algorithm for computing the oriented diameter of the power graph of a given nilpotent group that runs in time polynomial in the size of the group.</description><subject>Algorithms</subject><subject>Completeness</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8c9T8C_KTM0rSU1RcMlMzE0tSS1SyE9TCMgvBzLcixILMop5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2NDA0NjS2AgIiVMFAIV6Leg</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Benson, Deepu</creator><creator>Das, Bireswar</creator><creator>Dey, Dipan</creator><creator>Ghosh, Jinia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241014</creationdate><title>On Oriented Diameter of Power Graphs</title><author>Benson, Deepu ; Das, Bireswar ; Dey, Dipan ; Ghosh, Jinia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31013932323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Completeness</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Benson, Deepu</creatorcontrib><creatorcontrib>Das, Bireswar</creatorcontrib><creatorcontrib>Dey, Dipan</creatorcontrib><creatorcontrib>Ghosh, Jinia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benson, Deepu</au><au>Das, Bireswar</au><au>Dey, Dipan</au><au>Ghosh, Jinia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Oriented Diameter of Power Graphs</atitle><jtitle>arXiv.org</jtitle><date>2024-10-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study the oriented diameter of power graphs of groups. We show that a \(2\)-edge connected power graph of a finite group has oriented diameter at most \(4\). We prove that the power graph of the cyclic group of order \(n\) has oriented diameter \(2\) for all \(n\neq 1,2,4,6\). For non-cyclic finite nilpotent groups, we show that the oriented diameter of corresponding power graphs is at least \(3\). Moreover, we provide necessary and sufficient conditions for the oriented diameter of \(2\)-edge connected power graphs of finite non-cyclic nilpotent groups to be either \(3\) or \(4\). This, in turn, gives an algorithm for computing the oriented diameter of the power graph of a given nilpotent group that runs in time polynomial in the size of the group.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3101393232
source Publicly Available Content Database
subjects Algorithms
Completeness
Graphs
Group theory
Polynomials
title On Oriented Diameter of Power Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Oriented%20Diameter%20of%20Power%20Graphs&rft.jtitle=arXiv.org&rft.au=Benson,%20Deepu&rft.date=2024-10-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3101393232%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31013932323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101393232&rft_id=info:pmid/&rfr_iscdi=true