Loading…

Mathematical modelling of mode I fracture in magnetoelastic medium

The influence of a Griffith fracture on magnetic fields and stress in an infinite piezomagnetic material under tension loading and magnetic has been explored using linear theory of piezomagnetic material and suitable boundary conditions. The solutions have been obtained in closed form for Mode I fra...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2024-10, Vol.130 (10), Article 694
Main Authors: Baroi, Juhi, Biswas, Mahargha, Paswan, Brijendra, Yvaz, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-a4ab3629164929b0898563e28847657a46a46bd042593f0e830ffa63243e32b23
container_end_page
container_issue 10
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 130
creator Baroi, Juhi
Biswas, Mahargha
Paswan, Brijendra
Yvaz, A.
description The influence of a Griffith fracture on magnetic fields and stress in an infinite piezomagnetic material under tension loading and magnetic has been explored using linear theory of piezomagnetic material and suitable boundary conditions. The solutions have been obtained in closed form for Mode I fracture and external loading utilised to open the fracture. The rate of energy release has been determined for the non-zero magnetic field within the fracture at the crack tip. During computation of driving force, the magnetostatic energy has been taken into account and it has been observed that the rate of energy release is the cubic function of external loading. The findings could be utilised to explain various nonlinear phenomena in piezomagnetic ceramic for structural durability.
doi_str_mv 10.1007/s00339-024-07685-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3101542769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101542769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a4ab3629164929b0898563e28847657a46a46bd042593f0e830ffa63243e32b23</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJJk2Toy5-wYoXPYe0m6xd-rEm7cF_b9wK3hwGhoH3eWd4CbnkcM0BypsEgGgYCMmgVLpgeEQWXKJgoBCOyQKMLJlGo07JWUo7yCWFWJC7Fzd--M6NTe1a2g0b37ZNv6VDOCz0mYbo6nGKnjY97dy29-PgW5cyQDu_aabunJwE1yZ_8TuX5P3h_m31xNavj8-r2zWrBcDInHQVKmG4kkaYCrTRhUIvtJalKkonVe5qk98qDAbwGiEEp1BI9CgqgUtyNfvu4_A5-TTa3TDFPp-0yIEXUpTKZJWYVXUcUoo-2H1sOhe_LAf7k5Wds7I5K3vIymKGcIZSFvdbH_-s_6G-AafYai0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101542769</pqid></control><display><type>article</type><title>Mathematical modelling of mode I fracture in magnetoelastic medium</title><source>Springer Nature</source><creator>Baroi, Juhi ; Biswas, Mahargha ; Paswan, Brijendra ; Yvaz, A.</creator><creatorcontrib>Baroi, Juhi ; Biswas, Mahargha ; Paswan, Brijendra ; Yvaz, A.</creatorcontrib><description>The influence of a Griffith fracture on magnetic fields and stress in an infinite piezomagnetic material under tension loading and magnetic has been explored using linear theory of piezomagnetic material and suitable boundary conditions. The solutions have been obtained in closed form for Mode I fracture and external loading utilised to open the fracture. The rate of energy release has been determined for the non-zero magnetic field within the fracture at the crack tip. During computation of driving force, the magnetostatic energy has been taken into account and it has been observed that the rate of energy release is the cubic function of external loading. The findings could be utilised to explain various nonlinear phenomena in piezomagnetic ceramic for structural durability.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07685-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Crack tips ; Griffith Irwin fracture ; Machines ; Magnetic fields ; Manufacturing ; Nanotechnology ; Nonlinear phenomena ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2024-10, Vol.130 (10), Article 694</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-a4ab3629164929b0898563e28847657a46a46bd042593f0e830ffa63243e32b23</cites><orcidid>0000-0001-9357-8597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baroi, Juhi</creatorcontrib><creatorcontrib>Biswas, Mahargha</creatorcontrib><creatorcontrib>Paswan, Brijendra</creatorcontrib><creatorcontrib>Yvaz, A.</creatorcontrib><title>Mathematical modelling of mode I fracture in magnetoelastic medium</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>The influence of a Griffith fracture on magnetic fields and stress in an infinite piezomagnetic material under tension loading and magnetic has been explored using linear theory of piezomagnetic material and suitable boundary conditions. The solutions have been obtained in closed form for Mode I fracture and external loading utilised to open the fracture. The rate of energy release has been determined for the non-zero magnetic field within the fracture at the crack tip. During computation of driving force, the magnetostatic energy has been taken into account and it has been observed that the rate of energy release is the cubic function of external loading. The findings could be utilised to explain various nonlinear phenomena in piezomagnetic ceramic for structural durability.</description><subject>Boundary conditions</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Crack tips</subject><subject>Griffith Irwin fracture</subject><subject>Machines</subject><subject>Magnetic fields</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Nonlinear phenomena</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJJk2Toy5-wYoXPYe0m6xd-rEm7cF_b9wK3hwGhoH3eWd4CbnkcM0BypsEgGgYCMmgVLpgeEQWXKJgoBCOyQKMLJlGo07JWUo7yCWFWJC7Fzd--M6NTe1a2g0b37ZNv6VDOCz0mYbo6nGKnjY97dy29-PgW5cyQDu_aabunJwE1yZ_8TuX5P3h_m31xNavj8-r2zWrBcDInHQVKmG4kkaYCrTRhUIvtJalKkonVe5qk98qDAbwGiEEp1BI9CgqgUtyNfvu4_A5-TTa3TDFPp-0yIEXUpTKZJWYVXUcUoo-2H1sOhe_LAf7k5Wds7I5K3vIymKGcIZSFvdbH_-s_6G-AafYai0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Baroi, Juhi</creator><creator>Biswas, Mahargha</creator><creator>Paswan, Brijendra</creator><creator>Yvaz, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9357-8597</orcidid></search><sort><creationdate>20241001</creationdate><title>Mathematical modelling of mode I fracture in magnetoelastic medium</title><author>Baroi, Juhi ; Biswas, Mahargha ; Paswan, Brijendra ; Yvaz, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a4ab3629164929b0898563e28847657a46a46bd042593f0e830ffa63243e32b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Crack tips</topic><topic>Griffith Irwin fracture</topic><topic>Machines</topic><topic>Magnetic fields</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Nonlinear phenomena</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baroi, Juhi</creatorcontrib><creatorcontrib>Biswas, Mahargha</creatorcontrib><creatorcontrib>Paswan, Brijendra</creatorcontrib><creatorcontrib>Yvaz, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baroi, Juhi</au><au>Biswas, Mahargha</au><au>Paswan, Brijendra</au><au>Yvaz, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modelling of mode I fracture in magnetoelastic medium</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>130</volume><issue>10</issue><artnum>694</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The influence of a Griffith fracture on magnetic fields and stress in an infinite piezomagnetic material under tension loading and magnetic has been explored using linear theory of piezomagnetic material and suitable boundary conditions. The solutions have been obtained in closed form for Mode I fracture and external loading utilised to open the fracture. The rate of energy release has been determined for the non-zero magnetic field within the fracture at the crack tip. During computation of driving force, the magnetostatic energy has been taken into account and it has been observed that the rate of energy release is the cubic function of external loading. The findings could be utilised to explain various nonlinear phenomena in piezomagnetic ceramic for structural durability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07685-3</doi><orcidid>https://orcid.org/0000-0001-9357-8597</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2024-10, Vol.130 (10), Article 694
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_3101542769
source Springer Nature
subjects Boundary conditions
Characterization and Evaluation of Materials
Condensed Matter Physics
Crack tips
Griffith Irwin fracture
Machines
Magnetic fields
Manufacturing
Nanotechnology
Nonlinear phenomena
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Thin Films
title Mathematical modelling of mode I fracture in magnetoelastic medium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modelling%20of%20mode%20I%20fracture%20in%20magnetoelastic%20medium&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Baroi,%20Juhi&rft.date=2024-10-01&rft.volume=130&rft.issue=10&rft.artnum=694&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07685-3&rft_dat=%3Cproquest_cross%3E3101542769%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-a4ab3629164929b0898563e28847657a46a46bd042593f0e830ffa63243e32b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101542769&rft_id=info:pmid/&rfr_iscdi=true