Loading…

Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics

The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10 7 cm/s), which are comparable to those obtain...

Full description

Saved in:
Bibliographic Details
Published in:Technical physics 2024, Vol.69 (4), p.850-857
Main Authors: Emlin, R. V., Punanov, I. F., Kulikov, V. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63
container_end_page 857
container_issue 4
container_start_page 850
container_title Technical physics
container_volume 69
creator Emlin, R. V.
Punanov, I. F.
Kulikov, V. D.
description The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10 7 cm/s), which are comparable to those obtained earlier in crystals in the same conditions. The high velocities of the anode-initiated breakdown channels are satisfactorily explained within the model of the cascade Auger transitions, developed for the crystalline materials. According to this model, velo city of the breakdown channel propagation is proportional to the electrical field strength. The time delay in breakdown channel formation relative to the voltage pulse rise time does not exceed ~5 × 10 –10 s within the margin of error.
doi_str_mv 10.1134/S1063784224030095
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3101788746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101788746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq5nNJps9aq0PqFZQz0uana2pbdImW8R_b9YKHkQYmBm-xwwfIafAzgF4cfEMTPJSFXleMM5YJfbIAFjFMilysd_Pkmc9fkiOYlwwBqCEHBA9XqLpgnfW0Ac0b9rZuKK-pU_Br_Vcd9a7fn3Uzkc03jX0KqB-b_yHo6NEd7ik1tGJ3WxtQ6dhrnura4vfvtbEY3LQ6mXEk58-JK8345fRXTaZ3t6PLieZgUp1mVI5SCYFx1wULVemVFgiM-nLYoYNYgPQlAktpZyJmWyxaisUhTGikan4kJztfNfBb7YYu3rht8GlkzUHBqVSZdGzYMcywccYsK3Xwa50-KyB1X2S9Z8kkybfaWLiujmGX-f_RV93m3U9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101788746</pqid></control><display><type>article</type><title>Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics</title><source>Springer Nature</source><creator>Emlin, R. V. ; Punanov, I. F. ; Kulikov, V. D.</creator><creatorcontrib>Emlin, R. V. ; Punanov, I. F. ; Kulikov, V. D.</creatorcontrib><description>The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10 7 cm/s), which are comparable to those obtained earlier in crystals in the same conditions. The high velocities of the anode-initiated breakdown channels are satisfactorily explained within the model of the cascade Auger transitions, developed for the crystalline materials. According to this model, velo city of the breakdown channel propagation is proportional to the electrical field strength. The time delay in breakdown channel formation relative to the voltage pulse rise time does not exceed ~5 × 10 –10 s within the margin of error.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784224030095</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Dielectric breakdown ; Dielectric strength ; Field strength ; Molecular chains ; Physics ; Physics and Astronomy ; Pulse propagation ; Time lag</subject><ispartof>Technical physics, 2024, Vol.69 (4), p.850-857</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7842, Technical Physics, 2024, Vol. 69, No. 4, pp. 850–857. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2022, published in Zhurnal Tekhnicheskoi Fiziki, 2022, Vol. 92, No. 10, pp. 1563–1570. English Text © Ioffe Institute, 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Emlin, R. V.</creatorcontrib><creatorcontrib>Punanov, I. F.</creatorcontrib><creatorcontrib>Kulikov, V. D.</creatorcontrib><title>Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10 7 cm/s), which are comparable to those obtained earlier in crystals in the same conditions. The high velocities of the anode-initiated breakdown channels are satisfactorily explained within the model of the cascade Auger transitions, developed for the crystalline materials. According to this model, velo city of the breakdown channel propagation is proportional to the electrical field strength. The time delay in breakdown channel formation relative to the voltage pulse rise time does not exceed ~5 × 10 –10 s within the margin of error.</description><subject>Classical and Continuum Physics</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Field strength</subject><subject>Molecular chains</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pulse propagation</subject><subject>Time lag</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq5nNJps9aq0PqFZQz0uana2pbdImW8R_b9YKHkQYmBm-xwwfIafAzgF4cfEMTPJSFXleMM5YJfbIAFjFMilysd_Pkmc9fkiOYlwwBqCEHBA9XqLpgnfW0Ac0b9rZuKK-pU_Br_Vcd9a7fn3Uzkc03jX0KqB-b_yHo6NEd7ik1tGJ3WxtQ6dhrnura4vfvtbEY3LQ6mXEk58-JK8345fRXTaZ3t6PLieZgUp1mVI5SCYFx1wULVemVFgiM-nLYoYNYgPQlAktpZyJmWyxaisUhTGikan4kJztfNfBb7YYu3rht8GlkzUHBqVSZdGzYMcywccYsK3Xwa50-KyB1X2S9Z8kkybfaWLiujmGX-f_RV93m3U9</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Emlin, R. V.</creator><creator>Punanov, I. F.</creator><creator>Kulikov, V. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics</title><author>Emlin, R. V. ; Punanov, I. F. ; Kulikov, V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Continuum Physics</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Field strength</topic><topic>Molecular chains</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pulse propagation</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emlin, R. V.</creatorcontrib><creatorcontrib>Punanov, I. F.</creatorcontrib><creatorcontrib>Kulikov, V. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emlin, R. V.</au><au>Punanov, I. F.</au><au>Kulikov, V. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2024</date><risdate>2024</risdate><volume>69</volume><issue>4</issue><spage>850</spage><epage>857</epage><pages>850-857</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10 7 cm/s), which are comparable to those obtained earlier in crystals in the same conditions. The high velocities of the anode-initiated breakdown channels are satisfactorily explained within the model of the cascade Auger transitions, developed for the crystalline materials. According to this model, velo city of the breakdown channel propagation is proportional to the electrical field strength. The time delay in breakdown channel formation relative to the voltage pulse rise time does not exceed ~5 × 10 –10 s within the margin of error.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784224030095</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7842
ispartof Technical physics, 2024, Vol.69 (4), p.850-857
issn 1063-7842
1090-6525
language eng
recordid cdi_proquest_journals_3101788746
source Springer Nature
subjects Classical and Continuum Physics
Dielectric breakdown
Dielectric strength
Field strength
Molecular chains
Physics
Physics and Astronomy
Pulse propagation
Time lag
title Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Mechanism%20of%20Propagation%20of%20Nanosecond%20Breakdown%20Channel%20in%20Liquid%20Organic%20Dielectrics&rft.jtitle=Technical%20physics&rft.au=Emlin,%20R.%20V.&rft.date=2024&rft.volume=69&rft.issue=4&rft.spage=850&rft.epage=857&rft.pages=850-857&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784224030095&rft_dat=%3Cproquest_cross%3E3101788746%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101788746&rft_id=info:pmid/&rfr_iscdi=true