Loading…
Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics
The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10 7 cm/s), which are comparable to those obtain...
Saved in:
Published in: | Technical physics 2024, Vol.69 (4), p.850-857 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63 |
container_end_page | 857 |
container_issue | 4 |
container_start_page | 850 |
container_title | Technical physics |
container_volume | 69 |
creator | Emlin, R. V. Punanov, I. F. Kulikov, V. D. |
description | The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10
7
cm/s), which are comparable to those obtained earlier in crystals in the same conditions. The high velocities of the anode-initiated breakdown channels are satisfactorily explained within the model of the cascade Auger transitions, developed for the crystalline materials. According to this model, velo city of the breakdown channel propagation is proportional to the electrical field strength. The time delay in breakdown channel formation relative to the voltage pulse rise time does not exceed ~5 × 10
–10
s within the margin of error. |
doi_str_mv | 10.1134/S1063784224030095 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3101788746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101788746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq5nNJps9aq0PqFZQz0uana2pbdImW8R_b9YKHkQYmBm-xwwfIafAzgF4cfEMTPJSFXleMM5YJfbIAFjFMilysd_Pkmc9fkiOYlwwBqCEHBA9XqLpgnfW0Ac0b9rZuKK-pU_Br_Vcd9a7fn3Uzkc03jX0KqB-b_yHo6NEd7ik1tGJ3WxtQ6dhrnura4vfvtbEY3LQ6mXEk58-JK8345fRXTaZ3t6PLieZgUp1mVI5SCYFx1wULVemVFgiM-nLYoYNYgPQlAktpZyJmWyxaisUhTGikan4kJztfNfBb7YYu3rht8GlkzUHBqVSZdGzYMcywccYsK3Xwa50-KyB1X2S9Z8kkybfaWLiujmGX-f_RV93m3U9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101788746</pqid></control><display><type>article</type><title>Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics</title><source>Springer Nature</source><creator>Emlin, R. V. ; Punanov, I. F. ; Kulikov, V. D.</creator><creatorcontrib>Emlin, R. V. ; Punanov, I. F. ; Kulikov, V. D.</creatorcontrib><description>The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10
7
cm/s), which are comparable to those obtained earlier in crystals in the same conditions. The high velocities of the anode-initiated breakdown channels are satisfactorily explained within the model of the cascade Auger transitions, developed for the crystalline materials. According to this model, velo city of the breakdown channel propagation is proportional to the electrical field strength. The time delay in breakdown channel formation relative to the voltage pulse rise time does not exceed ~5 × 10
–10
s within the margin of error.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784224030095</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Dielectric breakdown ; Dielectric strength ; Field strength ; Molecular chains ; Physics ; Physics and Astronomy ; Pulse propagation ; Time lag</subject><ispartof>Technical physics, 2024, Vol.69 (4), p.850-857</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7842, Technical Physics, 2024, Vol. 69, No. 4, pp. 850–857. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2022, published in Zhurnal Tekhnicheskoi Fiziki, 2022, Vol. 92, No. 10, pp. 1563–1570. English Text © Ioffe Institute, 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Emlin, R. V.</creatorcontrib><creatorcontrib>Punanov, I. F.</creatorcontrib><creatorcontrib>Kulikov, V. D.</creatorcontrib><title>Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10
7
cm/s), which are comparable to those obtained earlier in crystals in the same conditions. The high velocities of the anode-initiated breakdown channels are satisfactorily explained within the model of the cascade Auger transitions, developed for the crystalline materials. According to this model, velo city of the breakdown channel propagation is proportional to the electrical field strength. The time delay in breakdown channel formation relative to the voltage pulse rise time does not exceed ~5 × 10
–10
s within the margin of error.</description><subject>Classical and Continuum Physics</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Field strength</subject><subject>Molecular chains</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pulse propagation</subject><subject>Time lag</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq5nNJps9aq0PqFZQz0uana2pbdImW8R_b9YKHkQYmBm-xwwfIafAzgF4cfEMTPJSFXleMM5YJfbIAFjFMilysd_Pkmc9fkiOYlwwBqCEHBA9XqLpgnfW0Ac0b9rZuKK-pU_Br_Vcd9a7fn3Uzkc03jX0KqB-b_yHo6NEd7ik1tGJ3WxtQ6dhrnura4vfvtbEY3LQ6mXEk58-JK8345fRXTaZ3t6PLieZgUp1mVI5SCYFx1wULVemVFgiM-nLYoYNYgPQlAktpZyJmWyxaisUhTGikan4kJztfNfBb7YYu3rht8GlkzUHBqVSZdGzYMcywccYsK3Xwa50-KyB1X2S9Z8kkybfaWLiujmGX-f_RV93m3U9</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Emlin, R. V.</creator><creator>Punanov, I. F.</creator><creator>Kulikov, V. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics</title><author>Emlin, R. V. ; Punanov, I. F. ; Kulikov, V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Continuum Physics</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Field strength</topic><topic>Molecular chains</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pulse propagation</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emlin, R. V.</creatorcontrib><creatorcontrib>Punanov, I. F.</creatorcontrib><creatorcontrib>Kulikov, V. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emlin, R. V.</au><au>Punanov, I. F.</au><au>Kulikov, V. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2024</date><risdate>2024</risdate><volume>69</volume><issue>4</issue><spage>850</spage><epage>857</epage><pages>850-857</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>The mechanism of anode-initiated breakdown in liquid organic dielectrics with long molecular chains is proposed on the basis of the experimental data on high velocities of the breakdown channel propagation in organosilicon and organofluorine liquids (~10
7
cm/s), which are comparable to those obtained earlier in crystals in the same conditions. The high velocities of the anode-initiated breakdown channels are satisfactorily explained within the model of the cascade Auger transitions, developed for the crystalline materials. According to this model, velo city of the breakdown channel propagation is proportional to the electrical field strength. The time delay in breakdown channel formation relative to the voltage pulse rise time does not exceed ~5 × 10
–10
s within the margin of error.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784224030095</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7842 |
ispartof | Technical physics, 2024, Vol.69 (4), p.850-857 |
issn | 1063-7842 1090-6525 |
language | eng |
recordid | cdi_proquest_journals_3101788746 |
source | Springer Nature |
subjects | Classical and Continuum Physics Dielectric breakdown Dielectric strength Field strength Molecular chains Physics Physics and Astronomy Pulse propagation Time lag |
title | Electronic Mechanism of Propagation of Nanosecond Breakdown Channel in Liquid Organic Dielectrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Mechanism%20of%20Propagation%20of%20Nanosecond%20Breakdown%20Channel%20in%20Liquid%20Organic%20Dielectrics&rft.jtitle=Technical%20physics&rft.au=Emlin,%20R.%20V.&rft.date=2024&rft.volume=69&rft.issue=4&rft.spage=850&rft.epage=857&rft.pages=850-857&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784224030095&rft_dat=%3Cproquest_cross%3E3101788746%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-882160653e254f38c78e7e0c8564bedeed11d73e2766b5b6fe9f9e54cc5d65d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101788746&rft_id=info:pmid/&rfr_iscdi=true |