Loading…

Real-World Image Deraining Using Model-Free Unsupervised Learning

We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rai...

Full description

Saved in:
Bibliographic Details
Published in:International journal of intelligent systems 2024-08, Vol.2024
Main Authors: Yu, Rongwei, Xiang, Jingyi, Ni Shu, Zhang, Peihao, Li, Yizhan, Shen, Yiyang, Wang, Weiming, Wang, Lina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title International journal of intelligent systems
container_volume 2024
creator Yu, Rongwei
Xiang, Jingyi
Ni Shu
Zhang, Peihao
Li, Yizhan
Shen, Yiyang
Wang, Weiming
Wang, Lina
description We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.
doi_str_mv 10.1155/2024/7454928
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3101836171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101836171</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-903b354109279bc6452aba6f6739596c6f1ef8f56e6f546f70b6baa0063964d13</originalsourceid><addsrcrecordid>eNotjlFLwzAUhYMoOKdv_oCCz3G5TXKTPI7pdFARxKJvI11vRkdta7L6--3Ql3NePr5zGLsFcQ-g9SIXuVoYpZXL7RmbgXCWA8DnOZsJaxW3YOQlu0rpIATABM7Y8o18yz_62NbZ5svvKXug6Juu6fZZmU750tfU8nUkysoujQPFnyZRnRXk4wm7ZhfBt4lu_nvOyvXj--qZF69Pm9Wy4AOAPHInZCW1mj7lxlU7VDr3lceARjrtcIcBKNigkTBohcGICivvhUDpUNUg5-zuzzvE_nukdNwe-jF20-RWggArEQzIX71eSW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101836171</pqid></control><display><type>article</type><title>Real-World Image Deraining Using Model-Free Unsupervised Learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Yu, Rongwei ; Xiang, Jingyi ; Ni Shu ; Zhang, Peihao ; Li, Yizhan ; Shen, Yiyang ; Wang, Weiming ; Wang, Lina</creator><contributor>Subrata Kumar Sarker</contributor><creatorcontrib>Yu, Rongwei ; Xiang, Jingyi ; Ni Shu ; Zhang, Peihao ; Li, Yizhan ; Shen, Yiyang ; Wang, Weiming ; Wang, Lina ; Subrata Kumar Sarker</creatorcontrib><description>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1155/2024/7454928</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Paradigms ; Rain ; Unsupervised learning</subject><ispartof>International journal of intelligent systems, 2024-08, Vol.2024</ispartof><rights>Copyright © 2024 Rongwei Yu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3101836171/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3101836171?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Subrata Kumar Sarker</contributor><creatorcontrib>Yu, Rongwei</creatorcontrib><creatorcontrib>Xiang, Jingyi</creatorcontrib><creatorcontrib>Ni Shu</creatorcontrib><creatorcontrib>Zhang, Peihao</creatorcontrib><creatorcontrib>Li, Yizhan</creatorcontrib><creatorcontrib>Shen, Yiyang</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><title>Real-World Image Deraining Using Model-Free Unsupervised Learning</title><title>International journal of intelligent systems</title><description>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</description><subject>Paradigms</subject><subject>Rain</subject><subject>Unsupervised learning</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjlFLwzAUhYMoOKdv_oCCz3G5TXKTPI7pdFARxKJvI11vRkdta7L6--3Ql3NePr5zGLsFcQ-g9SIXuVoYpZXL7RmbgXCWA8DnOZsJaxW3YOQlu0rpIATABM7Y8o18yz_62NbZ5svvKXug6Juu6fZZmU750tfU8nUkysoujQPFnyZRnRXk4wm7ZhfBt4lu_nvOyvXj--qZF69Pm9Wy4AOAPHInZCW1mj7lxlU7VDr3lceARjrtcIcBKNigkTBohcGICivvhUDpUNUg5-zuzzvE_nukdNwe-jF20-RWggArEQzIX71eSW8</recordid><startdate>20240826</startdate><enddate>20240826</enddate><creator>Yu, Rongwei</creator><creator>Xiang, Jingyi</creator><creator>Ni Shu</creator><creator>Zhang, Peihao</creator><creator>Li, Yizhan</creator><creator>Shen, Yiyang</creator><creator>Wang, Weiming</creator><creator>Wang, Lina</creator><general>Hindawi Limited</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20240826</creationdate><title>Real-World Image Deraining Using Model-Free Unsupervised Learning</title><author>Yu, Rongwei ; Xiang, Jingyi ; Ni Shu ; Zhang, Peihao ; Li, Yizhan ; Shen, Yiyang ; Wang, Weiming ; Wang, Lina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-903b354109279bc6452aba6f6739596c6f1ef8f56e6f546f70b6baa0063964d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Paradigms</topic><topic>Rain</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Rongwei</creatorcontrib><creatorcontrib>Xiang, Jingyi</creatorcontrib><creatorcontrib>Ni Shu</creatorcontrib><creatorcontrib>Zhang, Peihao</creatorcontrib><creatorcontrib>Li, Yizhan</creatorcontrib><creatorcontrib>Shen, Yiyang</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Rongwei</au><au>Xiang, Jingyi</au><au>Ni Shu</au><au>Zhang, Peihao</au><au>Li, Yizhan</au><au>Shen, Yiyang</au><au>Wang, Weiming</au><au>Wang, Lina</au><au>Subrata Kumar Sarker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-World Image Deraining Using Model-Free Unsupervised Learning</atitle><jtitle>International journal of intelligent systems</jtitle><date>2024-08-26</date><risdate>2024</risdate><volume>2024</volume><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/7454928</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2024-08, Vol.2024
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_3101836171
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals
subjects Paradigms
Rain
Unsupervised learning
title Real-World Image Deraining Using Model-Free Unsupervised Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-World%20Image%20Deraining%20Using%20Model-Free%20Unsupervised%20Learning&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Yu,%20Rongwei&rft.date=2024-08-26&rft.volume=2024&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1155/2024/7454928&rft_dat=%3Cproquest%3E3101836171%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-903b354109279bc6452aba6f6739596c6f1ef8f56e6f546f70b6baa0063964d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101836171&rft_id=info:pmid/&rfr_iscdi=true