Loading…
Real-World Image Deraining Using Model-Free Unsupervised Learning
We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rai...
Saved in:
Published in: | International journal of intelligent systems 2024-08, Vol.2024 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | International journal of intelligent systems |
container_volume | 2024 |
creator | Yu, Rongwei Xiang, Jingyi Ni Shu Zhang, Peihao Li, Yizhan Shen, Yiyang Wang, Weiming Wang, Lina |
description | We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones. |
doi_str_mv | 10.1155/2024/7454928 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3101836171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101836171</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-903b354109279bc6452aba6f6739596c6f1ef8f56e6f546f70b6baa0063964d13</originalsourceid><addsrcrecordid>eNotjlFLwzAUhYMoOKdv_oCCz3G5TXKTPI7pdFARxKJvI11vRkdta7L6--3Ql3NePr5zGLsFcQ-g9SIXuVoYpZXL7RmbgXCWA8DnOZsJaxW3YOQlu0rpIATABM7Y8o18yz_62NbZ5svvKXug6Juu6fZZmU750tfU8nUkysoujQPFnyZRnRXk4wm7ZhfBt4lu_nvOyvXj--qZF69Pm9Wy4AOAPHInZCW1mj7lxlU7VDr3lceARjrtcIcBKNigkTBohcGICivvhUDpUNUg5-zuzzvE_nukdNwe-jF20-RWggArEQzIX71eSW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101836171</pqid></control><display><type>article</type><title>Real-World Image Deraining Using Model-Free Unsupervised Learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Yu, Rongwei ; Xiang, Jingyi ; Ni Shu ; Zhang, Peihao ; Li, Yizhan ; Shen, Yiyang ; Wang, Weiming ; Wang, Lina</creator><contributor>Subrata Kumar Sarker</contributor><creatorcontrib>Yu, Rongwei ; Xiang, Jingyi ; Ni Shu ; Zhang, Peihao ; Li, Yizhan ; Shen, Yiyang ; Wang, Weiming ; Wang, Lina ; Subrata Kumar Sarker</creatorcontrib><description>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1155/2024/7454928</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Paradigms ; Rain ; Unsupervised learning</subject><ispartof>International journal of intelligent systems, 2024-08, Vol.2024</ispartof><rights>Copyright © 2024 Rongwei Yu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3101836171/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3101836171?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Subrata Kumar Sarker</contributor><creatorcontrib>Yu, Rongwei</creatorcontrib><creatorcontrib>Xiang, Jingyi</creatorcontrib><creatorcontrib>Ni Shu</creatorcontrib><creatorcontrib>Zhang, Peihao</creatorcontrib><creatorcontrib>Li, Yizhan</creatorcontrib><creatorcontrib>Shen, Yiyang</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><title>Real-World Image Deraining Using Model-Free Unsupervised Learning</title><title>International journal of intelligent systems</title><description>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</description><subject>Paradigms</subject><subject>Rain</subject><subject>Unsupervised learning</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjlFLwzAUhYMoOKdv_oCCz3G5TXKTPI7pdFARxKJvI11vRkdta7L6--3Ql3NePr5zGLsFcQ-g9SIXuVoYpZXL7RmbgXCWA8DnOZsJaxW3YOQlu0rpIATABM7Y8o18yz_62NbZ5svvKXug6Juu6fZZmU750tfU8nUkysoujQPFnyZRnRXk4wm7ZhfBt4lu_nvOyvXj--qZF69Pm9Wy4AOAPHInZCW1mj7lxlU7VDr3lceARjrtcIcBKNigkTBohcGICivvhUDpUNUg5-zuzzvE_nukdNwe-jF20-RWggArEQzIX71eSW8</recordid><startdate>20240826</startdate><enddate>20240826</enddate><creator>Yu, Rongwei</creator><creator>Xiang, Jingyi</creator><creator>Ni Shu</creator><creator>Zhang, Peihao</creator><creator>Li, Yizhan</creator><creator>Shen, Yiyang</creator><creator>Wang, Weiming</creator><creator>Wang, Lina</creator><general>Hindawi Limited</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20240826</creationdate><title>Real-World Image Deraining Using Model-Free Unsupervised Learning</title><author>Yu, Rongwei ; Xiang, Jingyi ; Ni Shu ; Zhang, Peihao ; Li, Yizhan ; Shen, Yiyang ; Wang, Weiming ; Wang, Lina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-903b354109279bc6452aba6f6739596c6f1ef8f56e6f546f70b6baa0063964d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Paradigms</topic><topic>Rain</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Rongwei</creatorcontrib><creatorcontrib>Xiang, Jingyi</creatorcontrib><creatorcontrib>Ni Shu</creatorcontrib><creatorcontrib>Zhang, Peihao</creatorcontrib><creatorcontrib>Li, Yizhan</creatorcontrib><creatorcontrib>Shen, Yiyang</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Rongwei</au><au>Xiang, Jingyi</au><au>Ni Shu</au><au>Zhang, Peihao</au><au>Li, Yizhan</au><au>Shen, Yiyang</au><au>Wang, Weiming</au><au>Wang, Lina</au><au>Subrata Kumar Sarker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-World Image Deraining Using Model-Free Unsupervised Learning</atitle><jtitle>International journal of intelligent systems</jtitle><date>2024-08-26</date><risdate>2024</risdate><volume>2024</volume><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/7454928</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2024-08, Vol.2024 |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_journals_3101836171 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals |
subjects | Paradigms Rain Unsupervised learning |
title | Real-World Image Deraining Using Model-Free Unsupervised Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-World%20Image%20Deraining%20Using%20Model-Free%20Unsupervised%20Learning&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Yu,%20Rongwei&rft.date=2024-08-26&rft.volume=2024&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1155/2024/7454928&rft_dat=%3Cproquest%3E3101836171%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-903b354109279bc6452aba6f6739596c6f1ef8f56e6f546f70b6baa0063964d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101836171&rft_id=info:pmid/&rfr_iscdi=true |