Loading…

OC15.07: Application of machine learning methods to predict the success of expectant or medical management of miscarriage

Saved in:
Bibliographic Details
Published in:Ultrasound in obstetrics & gynecology 2024-09, Vol.64 (S1), p.40-41
Main Authors: Murugesu, S., Linton‐Reid, K., Braun, E., Barcroft, J., Cooper, N., Pikovsky, M., Novak, A.M., Parker, N., Stalder, C., Al‐Memar, M., Saso, S., Aboagye, E., Bourne, T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 41
container_issue S1
container_start_page 40
container_title Ultrasound in obstetrics & gynecology
container_volume 64
creator Murugesu, S.
Linton‐Reid, K.
Braun, E.
Barcroft, J.
Cooper, N.
Pikovsky, M.
Novak, A.M.
Parker, N.
Stalder, C.
Al‐Memar, M.
Saso, S.
Aboagye, E.
Bourne, T.
description
doi_str_mv 10.1002/uog.27828
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102051719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102051719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1028-c27a7c8fe6856aad83b648ab58d0f8de11705fb2d1c492a3c6ac9da2636c04973</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqUw8A8sMTGkPDuJ7bBVFRSkSl3obLmO07pK4mA7gv57XMrK9KTTd3d6h9A9gRkBoE-j280oF1RcoAkpWJUBh_ISTaBikHFW0Wt0E8IBAFiRswk6rheknAF_xvNhaK1W0boeuwZ3Su9tb3BrlO9tv8OdiXtXBxwdHryprY447g0Oo9YmhJPFfA9GR9VH7HzCE6LalNOrnenMSU2pNmjlvU3SLbpqVBvM3d-dos3ry8fiLVutl--L-SrTBKjINOWKa9EYJkqmVC3yLSuE2paihkbUhpD0YLOlNdFFRVWumdJVrSjLmYai4vkUPZxzB-8-RxOiPLjR96lS5qkBSsJJlajHM6W9C8GbRg7edsofJQF5WlamZeXvsol9OrNftjXH_0G5WS_Pjh_40Hsf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102051719</pqid></control><display><type>article</type><title>OC15.07: Application of machine learning methods to predict the success of expectant or medical management of miscarriage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Murugesu, S. ; Linton‐Reid, K. ; Braun, E. ; Barcroft, J. ; Cooper, N. ; Pikovsky, M. ; Novak, A.M. ; Parker, N. ; Stalder, C. ; Al‐Memar, M. ; Saso, S. ; Aboagye, E. ; Bourne, T.</creator><creatorcontrib>Murugesu, S. ; Linton‐Reid, K. ; Braun, E. ; Barcroft, J. ; Cooper, N. ; Pikovsky, M. ; Novak, A.M. ; Parker, N. ; Stalder, C. ; Al‐Memar, M. ; Saso, S. ; Aboagye, E. ; Bourne, T.</creatorcontrib><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.27828</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Machine learning</subject><ispartof>Ultrasound in obstetrics &amp; gynecology, 2024-09, Vol.64 (S1), p.40-41</ispartof><rights>The Authors 2024. © Ultrasound in Obstetrics &amp; Gynecology</rights><rights>Copyright © 2024 ISUOG. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Murugesu, S.</creatorcontrib><creatorcontrib>Linton‐Reid, K.</creatorcontrib><creatorcontrib>Braun, E.</creatorcontrib><creatorcontrib>Barcroft, J.</creatorcontrib><creatorcontrib>Cooper, N.</creatorcontrib><creatorcontrib>Pikovsky, M.</creatorcontrib><creatorcontrib>Novak, A.M.</creatorcontrib><creatorcontrib>Parker, N.</creatorcontrib><creatorcontrib>Stalder, C.</creatorcontrib><creatorcontrib>Al‐Memar, M.</creatorcontrib><creatorcontrib>Saso, S.</creatorcontrib><creatorcontrib>Aboagye, E.</creatorcontrib><creatorcontrib>Bourne, T.</creatorcontrib><title>OC15.07: Application of machine learning methods to predict the success of expectant or medical management of miscarriage</title><title>Ultrasound in obstetrics &amp; gynecology</title><subject>Machine learning</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EEqUw8A8sMTGkPDuJ7bBVFRSkSl3obLmO07pK4mA7gv57XMrK9KTTd3d6h9A9gRkBoE-j280oF1RcoAkpWJUBh_ISTaBikHFW0Wt0E8IBAFiRswk6rheknAF_xvNhaK1W0boeuwZ3Su9tb3BrlO9tv8OdiXtXBxwdHryprY447g0Oo9YmhJPFfA9GR9VH7HzCE6LalNOrnenMSU2pNmjlvU3SLbpqVBvM3d-dos3ry8fiLVutl--L-SrTBKjINOWKa9EYJkqmVC3yLSuE2paihkbUhpD0YLOlNdFFRVWumdJVrSjLmYai4vkUPZxzB-8-RxOiPLjR96lS5qkBSsJJlajHM6W9C8GbRg7edsofJQF5WlamZeXvsol9OrNftjXH_0G5WS_Pjh_40Hsf</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Murugesu, S.</creator><creator>Linton‐Reid, K.</creator><creator>Braun, E.</creator><creator>Barcroft, J.</creator><creator>Cooper, N.</creator><creator>Pikovsky, M.</creator><creator>Novak, A.M.</creator><creator>Parker, N.</creator><creator>Stalder, C.</creator><creator>Al‐Memar, M.</creator><creator>Saso, S.</creator><creator>Aboagye, E.</creator><creator>Bourne, T.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>202409</creationdate><title>OC15.07: Application of machine learning methods to predict the success of expectant or medical management of miscarriage</title><author>Murugesu, S. ; Linton‐Reid, K. ; Braun, E. ; Barcroft, J. ; Cooper, N. ; Pikovsky, M. ; Novak, A.M. ; Parker, N. ; Stalder, C. ; Al‐Memar, M. ; Saso, S. ; Aboagye, E. ; Bourne, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1028-c27a7c8fe6856aad83b648ab58d0f8de11705fb2d1c492a3c6ac9da2636c04973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murugesu, S.</creatorcontrib><creatorcontrib>Linton‐Reid, K.</creatorcontrib><creatorcontrib>Braun, E.</creatorcontrib><creatorcontrib>Barcroft, J.</creatorcontrib><creatorcontrib>Cooper, N.</creatorcontrib><creatorcontrib>Pikovsky, M.</creatorcontrib><creatorcontrib>Novak, A.M.</creatorcontrib><creatorcontrib>Parker, N.</creatorcontrib><creatorcontrib>Stalder, C.</creatorcontrib><creatorcontrib>Al‐Memar, M.</creatorcontrib><creatorcontrib>Saso, S.</creatorcontrib><creatorcontrib>Aboagye, E.</creatorcontrib><creatorcontrib>Bourne, T.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murugesu, S.</au><au>Linton‐Reid, K.</au><au>Braun, E.</au><au>Barcroft, J.</au><au>Cooper, N.</au><au>Pikovsky, M.</au><au>Novak, A.M.</au><au>Parker, N.</au><au>Stalder, C.</au><au>Al‐Memar, M.</au><au>Saso, S.</au><au>Aboagye, E.</au><au>Bourne, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OC15.07: Application of machine learning methods to predict the success of expectant or medical management of miscarriage</atitle><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>64</volume><issue>S1</issue><spage>40</spage><epage>41</epage><pages>40-41</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/uog.27828</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7692
ispartof Ultrasound in obstetrics & gynecology, 2024-09, Vol.64 (S1), p.40-41
issn 0960-7692
1469-0705
language eng
recordid cdi_proquest_journals_3102051719
source Wiley-Blackwell Read & Publish Collection
subjects Machine learning
title OC15.07: Application of machine learning methods to predict the success of expectant or medical management of miscarriage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OC15.07:%20Application%20of%20machine%20learning%20methods%20to%20predict%20the%20success%20of%20expectant%20or%20medical%20management%20of%20miscarriage&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=Murugesu,%20S.&rft.date=2024-09&rft.volume=64&rft.issue=S1&rft.spage=40&rft.epage=41&rft.pages=40-41&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.27828&rft_dat=%3Cproquest_cross%3E3102051719%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1028-c27a7c8fe6856aad83b648ab58d0f8de11705fb2d1c492a3c6ac9da2636c04973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102051719&rft_id=info:pmid/&rfr_iscdi=true