Loading…
Solving non-differentiable Hammerstein integral equations via first-order divided differences
In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space C ( [ α , β ] ) as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a...
Saved in:
Published in: | Numerical algorithms 2024-10, Vol.97 (2), p.567-594 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3 |
container_end_page | 594 |
container_issue | 2 |
container_start_page | 567 |
container_title | Numerical algorithms |
container_volume | 97 |
creator | Hernández-Verón, M. A. Magreñán, Á. A. Martínez, Eulalia Villalba, Eva G. |
description | In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space
C
(
[
α
,
β
]
)
as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a uniparametric family of derivative-free iterative schemes in order to achieve an approximation of a solution of a Hammerstein-type integral equation with a non-differentiable Nemyskii operator. We compare the uniparametric family built and the Kurchatov method, obtaining improvements in the precision and also in the accessibility through studying its dynamic behavior. |
doi_str_mv | 10.1007/s11075-023-01715-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102217096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102217096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOZrJbjbdoxS1QsGDepSQ3Z2UlG3SJtuCb2_qKt48TZh8_z_wEXIN_BY4V3cJgCvJuCgYBwWSVSdkAlIJVotKnuZ3XjMo6tk5uUhpzXmOCTUhH6-hPzi_oj541jlrMaIfnGl6pAuz2WBMAzpPnR9wFU1Pcbc3gws-0YMz1Lr8z0LsMNLOHVyHHf1taTFdkjNr-oRXP3NK3h8f3uYLtnx5ep7fL1krFB-YNKZppGxKbAvVqBlWplRly5WRM7ASGsUFN1WFFkSprILSmAKbzNXYgTDFlNyMvdsYdntMg16HffT5pC6ACwGK11WmxEi1MaQU0eptdBsTPzVwfdSoR406a9TfGvUxVIyhlGG_wvhX_U_qC1Mhduk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102217096</pqid></control><display><type>article</type><title>Solving non-differentiable Hammerstein integral equations via first-order divided differences</title><source>Springer Nature</source><creator>Hernández-Verón, M. A. ; Magreñán, Á. A. ; Martínez, Eulalia ; Villalba, Eva G.</creator><creatorcontrib>Hernández-Verón, M. A. ; Magreñán, Á. A. ; Martínez, Eulalia ; Villalba, Eva G.</creatorcontrib><description>In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space
C
(
[
α
,
β
]
)
as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a uniparametric family of derivative-free iterative schemes in order to achieve an approximation of a solution of a Hammerstein-type integral equation with a non-differentiable Nemyskii operator. We compare the uniparametric family built and the Kurchatov method, obtaining improvements in the precision and also in the accessibility through studying its dynamic behavior.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-023-01715-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Banach spaces ; Computer Science ; Derivatives ; Integral equations ; Integrals ; Iterative methods ; Nonlinear equations ; Numeric Computing ; Numerical Analysis ; Operators (mathematics) ; Original Paper ; Partial differential equations ; Theory of Computation</subject><ispartof>Numerical algorithms, 2024-10, Vol.97 (2), p.567-594</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hernández-Verón, M. A.</creatorcontrib><creatorcontrib>Magreñán, Á. A.</creatorcontrib><creatorcontrib>Martínez, Eulalia</creatorcontrib><creatorcontrib>Villalba, Eva G.</creatorcontrib><title>Solving non-differentiable Hammerstein integral equations via first-order divided differences</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space
C
(
[
α
,
β
]
)
as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a uniparametric family of derivative-free iterative schemes in order to achieve an approximation of a solution of a Hammerstein-type integral equation with a non-differentiable Nemyskii operator. We compare the uniparametric family built and the Kurchatov method, obtaining improvements in the precision and also in the accessibility through studying its dynamic behavior.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Banach spaces</subject><subject>Computer Science</subject><subject>Derivatives</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>Iterative methods</subject><subject>Nonlinear equations</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngOZrJbjbdoxS1QsGDepSQ3Z2UlG3SJtuCb2_qKt48TZh8_z_wEXIN_BY4V3cJgCvJuCgYBwWSVSdkAlIJVotKnuZ3XjMo6tk5uUhpzXmOCTUhH6-hPzi_oj541jlrMaIfnGl6pAuz2WBMAzpPnR9wFU1Pcbc3gws-0YMz1Lr8z0LsMNLOHVyHHf1taTFdkjNr-oRXP3NK3h8f3uYLtnx5ep7fL1krFB-YNKZppGxKbAvVqBlWplRly5WRM7ASGsUFN1WFFkSprILSmAKbzNXYgTDFlNyMvdsYdntMg16HffT5pC6ACwGK11WmxEi1MaQU0eptdBsTPzVwfdSoR406a9TfGvUxVIyhlGG_wvhX_U_qC1Mhduk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Hernández-Verón, M. A.</creator><creator>Magreñán, Á. A.</creator><creator>Martínez, Eulalia</creator><creator>Villalba, Eva G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241001</creationdate><title>Solving non-differentiable Hammerstein integral equations via first-order divided differences</title><author>Hernández-Verón, M. A. ; Magreñán, Á. A. ; Martínez, Eulalia ; Villalba, Eva G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Banach spaces</topic><topic>Computer Science</topic><topic>Derivatives</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>Iterative methods</topic><topic>Nonlinear equations</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Verón, M. A.</creatorcontrib><creatorcontrib>Magreñán, Á. A.</creatorcontrib><creatorcontrib>Martínez, Eulalia</creatorcontrib><creatorcontrib>Villalba, Eva G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Verón, M. A.</au><au>Magreñán, Á. A.</au><au>Martínez, Eulalia</au><au>Villalba, Eva G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving non-differentiable Hammerstein integral equations via first-order divided differences</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>97</volume><issue>2</issue><spage>567</spage><epage>594</epage><pages>567-594</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space
C
(
[
α
,
β
]
)
as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a uniparametric family of derivative-free iterative schemes in order to achieve an approximation of a solution of a Hammerstein-type integral equation with a non-differentiable Nemyskii operator. We compare the uniparametric family built and the Kurchatov method, obtaining improvements in the precision and also in the accessibility through studying its dynamic behavior.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-023-01715-6</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2024-10, Vol.97 (2), p.567-594 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_3102217096 |
source | Springer Nature |
subjects | Algebra Algorithms Approximation Banach spaces Computer Science Derivatives Integral equations Integrals Iterative methods Nonlinear equations Numeric Computing Numerical Analysis Operators (mathematics) Original Paper Partial differential equations Theory of Computation |
title | Solving non-differentiable Hammerstein integral equations via first-order divided differences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20non-differentiable%20Hammerstein%20integral%20equations%20via%20first-order%20divided%20differences&rft.jtitle=Numerical%20algorithms&rft.au=Hern%C3%A1ndez-Ver%C3%B3n,%20M.%20A.&rft.date=2024-10-01&rft.volume=97&rft.issue=2&rft.spage=567&rft.epage=594&rft.pages=567-594&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-023-01715-6&rft_dat=%3Cproquest_cross%3E3102217096%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102217096&rft_id=info:pmid/&rfr_iscdi=true |