Loading…

Solving non-differentiable Hammerstein integral equations via first-order divided differences

In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space C ( [ α , β ] ) as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2024-10, Vol.97 (2), p.567-594
Main Authors: Hernández-Verón, M. A., Magreñán, Á. A., Martínez, Eulalia, Villalba, Eva G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3
container_end_page 594
container_issue 2
container_start_page 567
container_title Numerical algorithms
container_volume 97
creator Hernández-Verón, M. A.
Magreñán, Á. A.
Martínez, Eulalia
Villalba, Eva G.
description In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space C ( [ α , β ] ) as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a uniparametric family of derivative-free iterative schemes in order to achieve an approximation of a solution of a Hammerstein-type integral equation with a non-differentiable Nemyskii operator. We compare the uniparametric family built and the Kurchatov method, obtaining improvements in the precision and also in the accessibility through studying its dynamic behavior.
doi_str_mv 10.1007/s11075-023-01715-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102217096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102217096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOZrJbjbdoxS1QsGDepSQ3Z2UlG3SJtuCb2_qKt48TZh8_z_wEXIN_BY4V3cJgCvJuCgYBwWSVSdkAlIJVotKnuZ3XjMo6tk5uUhpzXmOCTUhH6-hPzi_oj541jlrMaIfnGl6pAuz2WBMAzpPnR9wFU1Pcbc3gws-0YMz1Lr8z0LsMNLOHVyHHf1taTFdkjNr-oRXP3NK3h8f3uYLtnx5ep7fL1krFB-YNKZppGxKbAvVqBlWplRly5WRM7ASGsUFN1WFFkSprILSmAKbzNXYgTDFlNyMvdsYdntMg16HffT5pC6ACwGK11WmxEi1MaQU0eptdBsTPzVwfdSoR406a9TfGvUxVIyhlGG_wvhX_U_qC1Mhduk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102217096</pqid></control><display><type>article</type><title>Solving non-differentiable Hammerstein integral equations via first-order divided differences</title><source>Springer Nature</source><creator>Hernández-Verón, M. A. ; Magreñán, Á. A. ; Martínez, Eulalia ; Villalba, Eva G.</creator><creatorcontrib>Hernández-Verón, M. A. ; Magreñán, Á. A. ; Martínez, Eulalia ; Villalba, Eva G.</creatorcontrib><description>In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space C ( [ α , β ] ) as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a uniparametric family of derivative-free iterative schemes in order to achieve an approximation of a solution of a Hammerstein-type integral equation with a non-differentiable Nemyskii operator. We compare the uniparametric family built and the Kurchatov method, obtaining improvements in the precision and also in the accessibility through studying its dynamic behavior.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-023-01715-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Banach spaces ; Computer Science ; Derivatives ; Integral equations ; Integrals ; Iterative methods ; Nonlinear equations ; Numeric Computing ; Numerical Analysis ; Operators (mathematics) ; Original Paper ; Partial differential equations ; Theory of Computation</subject><ispartof>Numerical algorithms, 2024-10, Vol.97 (2), p.567-594</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hernández-Verón, M. A.</creatorcontrib><creatorcontrib>Magreñán, Á. A.</creatorcontrib><creatorcontrib>Martínez, Eulalia</creatorcontrib><creatorcontrib>Villalba, Eva G.</creatorcontrib><title>Solving non-differentiable Hammerstein integral equations via first-order divided differences</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space C ( [ α , β ] ) as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a uniparametric family of derivative-free iterative schemes in order to achieve an approximation of a solution of a Hammerstein-type integral equation with a non-differentiable Nemyskii operator. We compare the uniparametric family built and the Kurchatov method, obtaining improvements in the precision and also in the accessibility through studying its dynamic behavior.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Banach spaces</subject><subject>Computer Science</subject><subject>Derivatives</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>Iterative methods</subject><subject>Nonlinear equations</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngOZrJbjbdoxS1QsGDepSQ3Z2UlG3SJtuCb2_qKt48TZh8_z_wEXIN_BY4V3cJgCvJuCgYBwWSVSdkAlIJVotKnuZ3XjMo6tk5uUhpzXmOCTUhH6-hPzi_oj541jlrMaIfnGl6pAuz2WBMAzpPnR9wFU1Pcbc3gws-0YMz1Lr8z0LsMNLOHVyHHf1taTFdkjNr-oRXP3NK3h8f3uYLtnx5ep7fL1krFB-YNKZppGxKbAvVqBlWplRly5WRM7ASGsUFN1WFFkSprILSmAKbzNXYgTDFlNyMvdsYdntMg16HffT5pC6ACwGK11WmxEi1MaQU0eptdBsTPzVwfdSoR406a9TfGvUxVIyhlGG_wvhX_U_qC1Mhduk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Hernández-Verón, M. A.</creator><creator>Magreñán, Á. A.</creator><creator>Martínez, Eulalia</creator><creator>Villalba, Eva G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241001</creationdate><title>Solving non-differentiable Hammerstein integral equations via first-order divided differences</title><author>Hernández-Verón, M. A. ; Magreñán, Á. A. ; Martínez, Eulalia ; Villalba, Eva G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Banach spaces</topic><topic>Computer Science</topic><topic>Derivatives</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>Iterative methods</topic><topic>Nonlinear equations</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Verón, M. A.</creatorcontrib><creatorcontrib>Magreñán, Á. A.</creatorcontrib><creatorcontrib>Martínez, Eulalia</creatorcontrib><creatorcontrib>Villalba, Eva G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Verón, M. A.</au><au>Magreñán, Á. A.</au><au>Martínez, Eulalia</au><au>Villalba, Eva G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving non-differentiable Hammerstein integral equations via first-order divided differences</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>97</volume><issue>2</issue><spage>567</spage><epage>594</epage><pages>567-594</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, the behavior of derivative-free techniques to approximate solutions of nonlinear Hammerstein-type integral equations in Banach space C ( [ α , β ] ) as alternatives against the well-known Newton’s method is examined. In particular, from the well-known Kurchatov method, we construct a uniparametric family of derivative-free iterative schemes in order to achieve an approximation of a solution of a Hammerstein-type integral equation with a non-differentiable Nemyskii operator. We compare the uniparametric family built and the Kurchatov method, obtaining improvements in the precision and also in the accessibility through studying its dynamic behavior.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-023-01715-6</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2024-10, Vol.97 (2), p.567-594
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_3102217096
source Springer Nature
subjects Algebra
Algorithms
Approximation
Banach spaces
Computer Science
Derivatives
Integral equations
Integrals
Iterative methods
Nonlinear equations
Numeric Computing
Numerical Analysis
Operators (mathematics)
Original Paper
Partial differential equations
Theory of Computation
title Solving non-differentiable Hammerstein integral equations via first-order divided differences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20non-differentiable%20Hammerstein%20integral%20equations%20via%20first-order%20divided%20differences&rft.jtitle=Numerical%20algorithms&rft.au=Hern%C3%A1ndez-Ver%C3%B3n,%20M.%20A.&rft.date=2024-10-01&rft.volume=97&rft.issue=2&rft.spage=567&rft.epage=594&rft.pages=567-594&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-023-01715-6&rft_dat=%3Cproquest_cross%3E3102217096%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-5aabb55b4ec37b78e6a474c07a581f51b7020a66ef1247f714aa3eb8e69ed12a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102217096&rft_id=info:pmid/&rfr_iscdi=true