Loading…

Mechanism-specific chemical energy accommodation with finite-rate surface chemistry in non-equilibrium flow

During atmospheric reentry, the vehicle surface is exposed to highly non-equilibrium flow. The vehicle surface can experience heterogeneous recombination of reactive atoms, which contributes to its aerothermodynamic heating. This process is followed by chemical energy accommodation (CEA), where the...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2024-09, Vol.36 (9)
Main Authors: Ko, Youngil, Jun, Eunji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During atmospheric reentry, the vehicle surface is exposed to highly non-equilibrium flow. The vehicle surface can experience heterogeneous recombination of reactive atoms, which contributes to its aerothermodynamic heating. This process is followed by chemical energy accommodation (CEA), where the released energy is either transferred to the surface or the internal energy modes of the recombined molecule. Heterogeneous recombination can be categorized into Eley–Rideal (ER) and Langmuir–Hinshelwood mechanisms, which differ in their methods of molecule formation and degrees of CEA. The complete CEA assumption may not consider the dependency of CEA on the mechanisms of heterogeneous recombination. This study aims to consider the mechanism-specific CEA for a more accurate prediction of surface heat flux. The authors implement mechanism-specific CEA within the direct simulation Monte Carlo framework using the finite-rate surface chemistry model, resolving elementary surface reactions and assigning a CEA coefficient, β, to each mechanism. The model is verified through comparisons with analytical solutions of surface coverage and validated against benchmark references. A parametric investigation of rarefied hypersonic flow over a two-dimensional cylinder is conducted under different freestream Mach and Knudsen numbers. Results show a reduction in total heat flux of up to 14.44% using mechanism-specific CEA compared to the complete CEA assumption. The reduction is attributed to the relative contribution of the ER mechanism, which can be a function of atomic partial pressure at the boundary layer.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0222518