Loading…
HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees
We propose HyperSteiner -- an efficient heuristic algorithm for computing Steiner minimal trees in the hyperbolic space. HyperSteiner extends the Euclidean Smith-Lee-Liebman algorithm, which is grounded in a divide-and-conquer approach involving the Delaunay triangulation. The central idea is rephra...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | García-Castellanos, Alejandro Aniss Aiman Medbouhi Marchetti, Giovanni Luca Bekkers, Erik J Kragic, Danica |
description | We propose HyperSteiner -- an efficient heuristic algorithm for computing Steiner minimal trees in the hyperbolic space. HyperSteiner extends the Euclidean Smith-Lee-Liebman algorithm, which is grounded in a divide-and-conquer approach involving the Delaunay triangulation. The central idea is rephrasing Steiner tree problems with three terminals as a system of equations in the Klein-Beltrami model. Motivated by the fact that hyperbolic geometry is well-suited for representing hierarchies, we explore applications to hierarchy discovery in data. Results show that HyperSteiner infers more realistic hierarchies than the Minimum Spanning Tree and is more scalable to large datasets than Neighbor Joining. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3102578242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102578242</sourcerecordid><originalsourceid>FETCH-proquest_journals_31025782423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8qgsSC0KLknNzEstslJwzs8tKC3JzEtX8EgtLcosLslMVgCrSMrPATKh6hR8M_MycxNzFEKKUlOLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjQwMjU3MLIxMiYOFUA4Pk6Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102578242</pqid></control><display><type>article</type><title>HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees</title><source>Publicly Available Content (ProQuest)</source><creator>García-Castellanos, Alejandro ; Aniss Aiman Medbouhi ; Marchetti, Giovanni Luca ; Bekkers, Erik J ; Kragic, Danica</creator><creatorcontrib>García-Castellanos, Alejandro ; Aniss Aiman Medbouhi ; Marchetti, Giovanni Luca ; Bekkers, Erik J ; Kragic, Danica</creatorcontrib><description>We propose HyperSteiner -- an efficient heuristic algorithm for computing Steiner minimal trees in the hyperbolic space. HyperSteiner extends the Euclidean Smith-Lee-Liebman algorithm, which is grounded in a divide-and-conquer approach involving the Delaunay triangulation. The central idea is rephrasing Steiner tree problems with three terminals as a system of equations in the Klein-Beltrami model. Motivated by the fact that hyperbolic geometry is well-suited for representing hierarchies, we explore applications to hierarchy discovery in data. Results show that HyperSteiner infers more realistic hierarchies than the Minimum Spanning Tree and is more scalable to large datasets than Neighbor Joining.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation ; Delaunay triangulation ; Euclidean geometry ; Graph theory ; Heuristic methods ; Hierarchies ; Hyperbolic coordinates</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3102578242?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>García-Castellanos, Alejandro</creatorcontrib><creatorcontrib>Aniss Aiman Medbouhi</creatorcontrib><creatorcontrib>Marchetti, Giovanni Luca</creatorcontrib><creatorcontrib>Bekkers, Erik J</creatorcontrib><creatorcontrib>Kragic, Danica</creatorcontrib><title>HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees</title><title>arXiv.org</title><description>We propose HyperSteiner -- an efficient heuristic algorithm for computing Steiner minimal trees in the hyperbolic space. HyperSteiner extends the Euclidean Smith-Lee-Liebman algorithm, which is grounded in a divide-and-conquer approach involving the Delaunay triangulation. The central idea is rephrasing Steiner tree problems with three terminals as a system of equations in the Klein-Beltrami model. Motivated by the fact that hyperbolic geometry is well-suited for representing hierarchies, we explore applications to hierarchy discovery in data. Results show that HyperSteiner infers more realistic hierarchies than the Minimum Spanning Tree and is more scalable to large datasets than Neighbor Joining.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Delaunay triangulation</subject><subject>Euclidean geometry</subject><subject>Graph theory</subject><subject>Heuristic methods</subject><subject>Hierarchies</subject><subject>Hyperbolic coordinates</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8qgsSC0KLknNzEstslJwzs8tKC3JzEtX8EgtLcosLslMVgCrSMrPATKh6hR8M_MycxNzFEKKUlOLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjQwMjU3MLIxMiYOFUA4Pk6Ag</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>García-Castellanos, Alejandro</creator><creator>Aniss Aiman Medbouhi</creator><creator>Marchetti, Giovanni Luca</creator><creator>Bekkers, Erik J</creator><creator>Kragic, Danica</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240909</creationdate><title>HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees</title><author>García-Castellanos, Alejandro ; Aniss Aiman Medbouhi ; Marchetti, Giovanni Luca ; Bekkers, Erik J ; Kragic, Danica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31025782423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Delaunay triangulation</topic><topic>Euclidean geometry</topic><topic>Graph theory</topic><topic>Heuristic methods</topic><topic>Hierarchies</topic><topic>Hyperbolic coordinates</topic><toplevel>online_resources</toplevel><creatorcontrib>García-Castellanos, Alejandro</creatorcontrib><creatorcontrib>Aniss Aiman Medbouhi</creatorcontrib><creatorcontrib>Marchetti, Giovanni Luca</creatorcontrib><creatorcontrib>Bekkers, Erik J</creatorcontrib><creatorcontrib>Kragic, Danica</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Castellanos, Alejandro</au><au>Aniss Aiman Medbouhi</au><au>Marchetti, Giovanni Luca</au><au>Bekkers, Erik J</au><au>Kragic, Danica</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees</atitle><jtitle>arXiv.org</jtitle><date>2024-09-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose HyperSteiner -- an efficient heuristic algorithm for computing Steiner minimal trees in the hyperbolic space. HyperSteiner extends the Euclidean Smith-Lee-Liebman algorithm, which is grounded in a divide-and-conquer approach involving the Delaunay triangulation. The central idea is rephrasing Steiner tree problems with three terminals as a system of equations in the Klein-Beltrami model. Motivated by the fact that hyperbolic geometry is well-suited for representing hierarchies, we explore applications to hierarchy discovery in data. Results show that HyperSteiner infers more realistic hierarchies than the Minimum Spanning Tree and is more scalable to large datasets than Neighbor Joining.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3102578242 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Computation Delaunay triangulation Euclidean geometry Graph theory Heuristic methods Hierarchies Hyperbolic coordinates |
title | HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HyperSteiner:%20Computing%20Heuristic%20Hyperbolic%20Steiner%20Minimal%20Trees&rft.jtitle=arXiv.org&rft.au=Garc%C3%ADa-Castellanos,%20Alejandro&rft.date=2024-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3102578242%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31025782423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102578242&rft_id=info:pmid/&rfr_iscdi=true |