Loading…

Whittle Index Learning Algorithms for Restless Bandits with Constant Stepsizes

We study the Whittle index learning algorithm for restless multi-armed bandits. We consider index learning algorithm with Q-learning. We first present Q-learning algorithm with exploration policies -- epsilon-greedy, softmax, epsilon-softmax with constant stepsizes. We extend the study of Q-learning...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Mittal, Vishesh, Meshram, Rahul, Prakash, Surya
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the Whittle index learning algorithm for restless multi-armed bandits. We consider index learning algorithm with Q-learning. We first present Q-learning algorithm with exploration policies -- epsilon-greedy, softmax, epsilon-softmax with constant stepsizes. We extend the study of Q-learning to index learning for single-armed restless bandit. The algorithm of index learning is two-timescale variant of stochastic approximation, on slower timescale we update index learning scheme and on faster timescale we update Q-learning assuming fixed index value. In Q-learning updates are in asynchronous manner. We study constant stepsizes two timescale stochastic approximation algorithm. We provide analysis of two-timescale stochastic approximation for index learning with constant stepsizes. Further, we present study on index learning with deep Q-network (DQN) learning and linear function approximation with state-aggregation method. We describe the performance of our algorithms using numerical examples. We have shown that index learning with Q learning, DQN and function approximations learns the Whittle index.
ISSN:2331-8422