Loading…

Hybrid Driven Learning for Joint Activity Detection and Channel Estimation in IRS-Assisted Massive Connectivity

We consider the uplink connectivity for massive machine-type communications (mMTC) assisted by intelligent reconfigurable surfaces (IRSs), where device activity detection (DAD) and channel estimation (CE) are challenging due to limited pilot sequences. Moreover, differentiation among device types ca...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2024-09, Vol.23 (9), p.10834-10849
Main Authors: Zheng, Shuntian, Wu, Sheng, Jia, Haoge, Jiang, Chunxiao, Kuang, Linling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-cde10ee1c902bbad9464ffd8d12022fbe449729375361866f6bb688aa3cd51e53
container_end_page 10849
container_issue 9
container_start_page 10834
container_title IEEE transactions on wireless communications
container_volume 23
creator Zheng, Shuntian
Wu, Sheng
Jia, Haoge
Jiang, Chunxiao
Kuang, Linling
description We consider the uplink connectivity for massive machine-type communications (mMTC) assisted by intelligent reconfigurable surfaces (IRSs), where device activity detection (DAD) and channel estimation (CE) are challenging due to limited pilot sequences. Moreover, differentiation among device types causes channels to deviate from the assumed characteristics, leading to performance degradation of conventional compressive sensing (CS) algorithms. To this end, two innovative networks driven by the hybrid of model and data are proposed exploiting the iterative frameworks and deep neural networks. We first present a hybrid driven iterative shrinkage thresholding algorithm, dubbed HISTA-Net, where a dual attention network (DAN) is embedded within the iterations to adaptively suppress iterative noise and enhance sparsity properties. Subsequently, we encapsulate data driven network and the intrinsic channel matrix knowledge, and derive a hybrid driven approximate message passing network (HAMP-Net) to further improve the sparse recovery performance. Our experiments demonstrate that the proposed networks outperform existing CS methodologies and deep learning strategies in accuracy, convergence, and generalization ability. Remarkably, the proposed HAMP-Net reduces pilot overhead by 30%, and achieves an NMSE gain of 3 dB for signal-to-noise ratios exceeding 15 dB.
doi_str_mv 10.1109/TWC.2024.3376381
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102974693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10476342</ieee_id><sourcerecordid>3102974693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-cde10ee1c902bbad9464ffd8d12022fbe449729375361866f6bb688aa3cd51e53</originalsourceid><addsrcrecordid>eNpNUD1PwzAUtBBIlMLOwGCJOcVfcZKxSgsFFSFBEaPlJC_gqtjFdiv13-PSDkzv9N7dPd0hdE3JiFJS3S0-6hEjTIw4LyQv6Qka0DwvM8ZEebrHXGaUFfIcXYSwJIQWMs8HyM12jTcdnnizBYvnoL019hP3zuMnZ2zE4zaarYk7PIEICTuLte1w_aWthRWehmi-9d_aWPz4-paNQzAhQoefdUJbwLVLzKPLJTrr9SrA1XEO0fv9dFHPsvnLw2M9nmctE3nM2g4oAaBtRVjT6K4SUvR9V3Y0ZWR9A0JUBat4kWLRUspeNo0sS6152-UUcj5EtwfftXc_GwhRLd3G2_RScUpYVQhZ8cQiB1brXQgeerX2KY3fKUrUvlaValX7WtWx1iS5OUgMAPyji3QWjP8CXfd0cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102974693</pqid></control><display><type>article</type><title>Hybrid Driven Learning for Joint Activity Detection and Channel Estimation in IRS-Assisted Massive Connectivity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Shuntian ; Wu, Sheng ; Jia, Haoge ; Jiang, Chunxiao ; Kuang, Linling</creator><creatorcontrib>Zheng, Shuntian ; Wu, Sheng ; Jia, Haoge ; Jiang, Chunxiao ; Kuang, Linling</creatorcontrib><description>We consider the uplink connectivity for massive machine-type communications (mMTC) assisted by intelligent reconfigurable surfaces (IRSs), where device activity detection (DAD) and channel estimation (CE) are challenging due to limited pilot sequences. Moreover, differentiation among device types causes channels to deviate from the assumed characteristics, leading to performance degradation of conventional compressive sensing (CS) algorithms. To this end, two innovative networks driven by the hybrid of model and data are proposed exploiting the iterative frameworks and deep neural networks. We first present a hybrid driven iterative shrinkage thresholding algorithm, dubbed HISTA-Net, where a dual attention network (DAN) is embedded within the iterations to adaptively suppress iterative noise and enhance sparsity properties. Subsequently, we encapsulate data driven network and the intrinsic channel matrix knowledge, and derive a hybrid driven approximate message passing network (HAMP-Net) to further improve the sparse recovery performance. Our experiments demonstrate that the proposed networks outperform existing CS methodologies and deep learning strategies in accuracy, convergence, and generalization ability. Remarkably, the proposed HAMP-Net reduces pilot overhead by 30%, and achieves an NMSE gain of 3 dB for signal-to-noise ratios exceeding 15 dB.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3376381</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Data models ; Deep learning ; Hybrid driven ; joint device activity detection and channel estimation ; Machine learning ; massive machine-type communication ; Message passing ; Noise levels ; Performance degradation ; Performance evaluation ; Reconfigurable intelligent surfaces ; Signal processing algorithms ; Vectors ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2024-09, Vol.23 (9), p.10834-10849</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-cde10ee1c902bbad9464ffd8d12022fbe449729375361866f6bb688aa3cd51e53</cites><orcidid>0000-0003-0257-8087 ; 0000-0003-0305-7742 ; 0000-0002-9947-9968 ; 0000-0002-3703-121X ; 0000-0001-8283-855X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10476342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zheng, Shuntian</creatorcontrib><creatorcontrib>Wu, Sheng</creatorcontrib><creatorcontrib>Jia, Haoge</creatorcontrib><creatorcontrib>Jiang, Chunxiao</creatorcontrib><creatorcontrib>Kuang, Linling</creatorcontrib><title>Hybrid Driven Learning for Joint Activity Detection and Channel Estimation in IRS-Assisted Massive Connectivity</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>We consider the uplink connectivity for massive machine-type communications (mMTC) assisted by intelligent reconfigurable surfaces (IRSs), where device activity detection (DAD) and channel estimation (CE) are challenging due to limited pilot sequences. Moreover, differentiation among device types causes channels to deviate from the assumed characteristics, leading to performance degradation of conventional compressive sensing (CS) algorithms. To this end, two innovative networks driven by the hybrid of model and data are proposed exploiting the iterative frameworks and deep neural networks. We first present a hybrid driven iterative shrinkage thresholding algorithm, dubbed HISTA-Net, where a dual attention network (DAN) is embedded within the iterations to adaptively suppress iterative noise and enhance sparsity properties. Subsequently, we encapsulate data driven network and the intrinsic channel matrix knowledge, and derive a hybrid driven approximate message passing network (HAMP-Net) to further improve the sparse recovery performance. Our experiments demonstrate that the proposed networks outperform existing CS methodologies and deep learning strategies in accuracy, convergence, and generalization ability. Remarkably, the proposed HAMP-Net reduces pilot overhead by 30%, and achieves an NMSE gain of 3 dB for signal-to-noise ratios exceeding 15 dB.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Hybrid driven</subject><subject>joint device activity detection and channel estimation</subject><subject>Machine learning</subject><subject>massive machine-type communication</subject><subject>Message passing</subject><subject>Noise levels</subject><subject>Performance degradation</subject><subject>Performance evaluation</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Signal processing algorithms</subject><subject>Vectors</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUD1PwzAUtBBIlMLOwGCJOcVfcZKxSgsFFSFBEaPlJC_gqtjFdiv13-PSDkzv9N7dPd0hdE3JiFJS3S0-6hEjTIw4LyQv6Qka0DwvM8ZEebrHXGaUFfIcXYSwJIQWMs8HyM12jTcdnnizBYvnoL019hP3zuMnZ2zE4zaarYk7PIEICTuLte1w_aWthRWehmi-9d_aWPz4-paNQzAhQoefdUJbwLVLzKPLJTrr9SrA1XEO0fv9dFHPsvnLw2M9nmctE3nM2g4oAaBtRVjT6K4SUvR9V3Y0ZWR9A0JUBat4kWLRUspeNo0sS6152-UUcj5EtwfftXc_GwhRLd3G2_RScUpYVQhZ8cQiB1brXQgeerX2KY3fKUrUvlaValX7WtWx1iS5OUgMAPyji3QWjP8CXfd0cg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zheng, Shuntian</creator><creator>Wu, Sheng</creator><creator>Jia, Haoge</creator><creator>Jiang, Chunxiao</creator><creator>Kuang, Linling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0257-8087</orcidid><orcidid>https://orcid.org/0000-0003-0305-7742</orcidid><orcidid>https://orcid.org/0000-0002-9947-9968</orcidid><orcidid>https://orcid.org/0000-0002-3703-121X</orcidid><orcidid>https://orcid.org/0000-0001-8283-855X</orcidid></search><sort><creationdate>20240901</creationdate><title>Hybrid Driven Learning for Joint Activity Detection and Channel Estimation in IRS-Assisted Massive Connectivity</title><author>Zheng, Shuntian ; Wu, Sheng ; Jia, Haoge ; Jiang, Chunxiao ; Kuang, Linling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-cde10ee1c902bbad9464ffd8d12022fbe449729375361866f6bb688aa3cd51e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Hybrid driven</topic><topic>joint device activity detection and channel estimation</topic><topic>Machine learning</topic><topic>massive machine-type communication</topic><topic>Message passing</topic><topic>Noise levels</topic><topic>Performance degradation</topic><topic>Performance evaluation</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Signal processing algorithms</topic><topic>Vectors</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shuntian</creatorcontrib><creatorcontrib>Wu, Sheng</creatorcontrib><creatorcontrib>Jia, Haoge</creatorcontrib><creatorcontrib>Jiang, Chunxiao</creatorcontrib><creatorcontrib>Kuang, Linling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shuntian</au><au>Wu, Sheng</au><au>Jia, Haoge</au><au>Jiang, Chunxiao</au><au>Kuang, Linling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Driven Learning for Joint Activity Detection and Channel Estimation in IRS-Assisted Massive Connectivity</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>23</volume><issue>9</issue><spage>10834</spage><epage>10849</epage><pages>10834-10849</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>We consider the uplink connectivity for massive machine-type communications (mMTC) assisted by intelligent reconfigurable surfaces (IRSs), where device activity detection (DAD) and channel estimation (CE) are challenging due to limited pilot sequences. Moreover, differentiation among device types causes channels to deviate from the assumed characteristics, leading to performance degradation of conventional compressive sensing (CS) algorithms. To this end, two innovative networks driven by the hybrid of model and data are proposed exploiting the iterative frameworks and deep neural networks. We first present a hybrid driven iterative shrinkage thresholding algorithm, dubbed HISTA-Net, where a dual attention network (DAN) is embedded within the iterations to adaptively suppress iterative noise and enhance sparsity properties. Subsequently, we encapsulate data driven network and the intrinsic channel matrix knowledge, and derive a hybrid driven approximate message passing network (HAMP-Net) to further improve the sparse recovery performance. Our experiments demonstrate that the proposed networks outperform existing CS methodologies and deep learning strategies in accuracy, convergence, and generalization ability. Remarkably, the proposed HAMP-Net reduces pilot overhead by 30%, and achieves an NMSE gain of 3 dB for signal-to-noise ratios exceeding 15 dB.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3376381</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0257-8087</orcidid><orcidid>https://orcid.org/0000-0003-0305-7742</orcidid><orcidid>https://orcid.org/0000-0002-9947-9968</orcidid><orcidid>https://orcid.org/0000-0002-3703-121X</orcidid><orcidid>https://orcid.org/0000-0001-8283-855X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-09, Vol.23 (9), p.10834-10849
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_3102974693
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Artificial neural networks
Data models
Deep learning
Hybrid driven
joint device activity detection and channel estimation
Machine learning
massive machine-type communication
Message passing
Noise levels
Performance degradation
Performance evaluation
Reconfigurable intelligent surfaces
Signal processing algorithms
Vectors
Wireless communication
title Hybrid Driven Learning for Joint Activity Detection and Channel Estimation in IRS-Assisted Massive Connectivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Driven%20Learning%20for%20Joint%20Activity%20Detection%20and%20Channel%20Estimation%20in%20IRS-Assisted%20Massive%20Connectivity&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zheng,%20Shuntian&rft.date=2024-09-01&rft.volume=23&rft.issue=9&rft.spage=10834&rft.epage=10849&rft.pages=10834-10849&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3376381&rft_dat=%3Cproquest_cross%3E3102974693%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-cde10ee1c902bbad9464ffd8d12022fbe449729375361866f6bb688aa3cd51e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102974693&rft_id=info:pmid/&rft_ieee_id=10476342&rfr_iscdi=true