Loading…

Meta-Heuristic Fronthaul Bit Allocation for Cell-Free Massive MIMO Systems

Limited capacity of fronthaul links in a cell-free massive multiple-input multiple-output (MIMO) system can cause quantization errors at a central processing unit (CPU) during data transmission, complicating the centralized rate optimization problem. Addressing this challenge, we propose a harmony s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2024-09, Vol.23 (9), p.11737-11752
Main Authors: Kim, Minje, Kim, In-soo, Choi, Junil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Limited capacity of fronthaul links in a cell-free massive multiple-input multiple-output (MIMO) system can cause quantization errors at a central processing unit (CPU) during data transmission, complicating the centralized rate optimization problem. Addressing this challenge, we propose a harmony search (HS)-based algorithm that renders the combinatorial non-convex problem tractable. One of the distinctive features of our algorithm is its hierarchical structure: it first allocates resources at the access point (AP) level and subsequently optimizes for user equipment (UE), ensuring a more efficient and structured approach to resource allocation. Our proposed algorithm deals with rigorous conditions, such as asymmetric fronthaul bit allocation and distinct quantization error levels at each AP, which were not considered in previous works. We derive a closed-form expression of signal-to-interference-plus-noise ratio (SINR), in which additive quantization noise model (AQNM) based distortion error is taken into account, to define the mathematical expression of spectral efficiency (SE) for each UE. Also, we provide analyses on computational complexity and convergence to investigate the practicality of proposed algorithm. By leveraging various performance metrics such as total SE and max-min fairness, we demonstrate that the proposed algorithm can adaptively optimize the fronthaul bit allocation depending on system requirements. Finally, simulation results show that the proposed algorithm can achieve satisfactory performance while maintaining low computational complexity, as compared to the exhaustive search method.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2024.3384548