Loading…

Thermalization is typical in large classical and quantum harmonic systems

We establish an analytical criterion for dynamical thermalization within harmonic systems, applicable to both classical and quantum models. Specifically, we prove that thermalization of various observables, such as particle energies in physically relevant random quadratic Hamiltonians, is typical fo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Cattaneo, Marco, Baldovin, Marco, Lucente, Dario, Muratore-Ginanneschi, Paolo, Vulpiani, Angelo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cattaneo, Marco
Baldovin, Marco
Lucente, Dario
Muratore-Ginanneschi, Paolo
Vulpiani, Angelo
description We establish an analytical criterion for dynamical thermalization within harmonic systems, applicable to both classical and quantum models. Specifically, we prove that thermalization of various observables, such as particle energies in physically relevant random quadratic Hamiltonians, is typical for large systems (\(N \gg 1\)) with initial conditions drawn from the microcanonical distribution. Moreover, we show that thermalization can also arise from non-typical initial conditions, where only a finite fraction of the normal modes is excited. Our findings provide a general dynamical basis for an approach to thermalization that bypasses chaos and ergodicity, focusing instead on observables dependent on a large number of normal modes, and build a bridge between the classical and quantum theories of thermalization.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3103018870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103018870</sourcerecordid><originalsourceid>FETCH-proquest_journals_31030188703</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCbWdi-K7rsvjxptSj5tXrKop1fEA7gamJkVy4SUZdEchNiwnGjknItjLapKZuzWDipYNPqFUXsHmiAuk-7RgHZgMDwV9AaJvgrdHeaELiYLAwbrne6BForK0o6tH2hI5T9u2f5ybk_XYgp-TopiN_oU3Cd1suSSl01Tc_nf9QbaJD0B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103018870</pqid></control><display><type>article</type><title>Thermalization is typical in large classical and quantum harmonic systems</title><source>ProQuest - Publicly Available Content Database</source><creator>Cattaneo, Marco ; Baldovin, Marco ; Lucente, Dario ; Muratore-Ginanneschi, Paolo ; Vulpiani, Angelo</creator><creatorcontrib>Cattaneo, Marco ; Baldovin, Marco ; Lucente, Dario ; Muratore-Ginanneschi, Paolo ; Vulpiani, Angelo</creatorcontrib><description>We establish an analytical criterion for dynamical thermalization within harmonic systems, applicable to both classical and quantum models. Specifically, we prove that thermalization of various observables, such as particle energies in physically relevant random quadratic Hamiltonians, is typical for large systems (\(N \gg 1\)) with initial conditions drawn from the microcanonical distribution. Moreover, we show that thermalization can also arise from non-typical initial conditions, where only a finite fraction of the normal modes is excited. Our findings provide a general dynamical basis for an approach to thermalization that bypasses chaos and ergodicity, focusing instead on observables dependent on a large number of normal modes, and build a bridge between the classical and quantum theories of thermalization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Initial conditions ; Thermalization (energy absorption)</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3103018870?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Cattaneo, Marco</creatorcontrib><creatorcontrib>Baldovin, Marco</creatorcontrib><creatorcontrib>Lucente, Dario</creatorcontrib><creatorcontrib>Muratore-Ginanneschi, Paolo</creatorcontrib><creatorcontrib>Vulpiani, Angelo</creatorcontrib><title>Thermalization is typical in large classical and quantum harmonic systems</title><title>arXiv.org</title><description>We establish an analytical criterion for dynamical thermalization within harmonic systems, applicable to both classical and quantum models. Specifically, we prove that thermalization of various observables, such as particle energies in physically relevant random quadratic Hamiltonians, is typical for large systems (\(N \gg 1\)) with initial conditions drawn from the microcanonical distribution. Moreover, we show that thermalization can also arise from non-typical initial conditions, where only a finite fraction of the normal modes is excited. Our findings provide a general dynamical basis for an approach to thermalization that bypasses chaos and ergodicity, focusing instead on observables dependent on a large number of normal modes, and build a bridge between the classical and quantum theories of thermalization.</description><subject>Initial conditions</subject><subject>Thermalization (energy absorption)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCbWdi-K7rsvjxptSj5tXrKop1fEA7gamJkVy4SUZdEchNiwnGjknItjLapKZuzWDipYNPqFUXsHmiAuk-7RgHZgMDwV9AaJvgrdHeaELiYLAwbrne6BForK0o6tH2hI5T9u2f5ybk_XYgp-TopiN_oU3Cd1suSSl01Tc_nf9QbaJD0B</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Cattaneo, Marco</creator><creator>Baldovin, Marco</creator><creator>Lucente, Dario</creator><creator>Muratore-Ginanneschi, Paolo</creator><creator>Vulpiani, Angelo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240910</creationdate><title>Thermalization is typical in large classical and quantum harmonic systems</title><author>Cattaneo, Marco ; Baldovin, Marco ; Lucente, Dario ; Muratore-Ginanneschi, Paolo ; Vulpiani, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31030188703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Initial conditions</topic><topic>Thermalization (energy absorption)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cattaneo, Marco</creatorcontrib><creatorcontrib>Baldovin, Marco</creatorcontrib><creatorcontrib>Lucente, Dario</creatorcontrib><creatorcontrib>Muratore-Ginanneschi, Paolo</creatorcontrib><creatorcontrib>Vulpiani, Angelo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cattaneo, Marco</au><au>Baldovin, Marco</au><au>Lucente, Dario</au><au>Muratore-Ginanneschi, Paolo</au><au>Vulpiani, Angelo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Thermalization is typical in large classical and quantum harmonic systems</atitle><jtitle>arXiv.org</jtitle><date>2024-09-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We establish an analytical criterion for dynamical thermalization within harmonic systems, applicable to both classical and quantum models. Specifically, we prove that thermalization of various observables, such as particle energies in physically relevant random quadratic Hamiltonians, is typical for large systems (\(N \gg 1\)) with initial conditions drawn from the microcanonical distribution. Moreover, we show that thermalization can also arise from non-typical initial conditions, where only a finite fraction of the normal modes is excited. Our findings provide a general dynamical basis for an approach to thermalization that bypasses chaos and ergodicity, focusing instead on observables dependent on a large number of normal modes, and build a bridge between the classical and quantum theories of thermalization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3103018870
source ProQuest - Publicly Available Content Database
subjects Initial conditions
Thermalization (energy absorption)
title Thermalization is typical in large classical and quantum harmonic systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Thermalization%20is%20typical%20in%20large%20classical%20and%20quantum%20harmonic%20systems&rft.jtitle=arXiv.org&rft.au=Cattaneo,%20Marco&rft.date=2024-09-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3103018870%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31030188703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103018870&rft_id=info:pmid/&rfr_iscdi=true