Loading…
A Practical Gated Recurrent Transformer Network Incorporating Multiple Fusions for Video Denoising
State-of-the-art (SOTA) video denoising methods employ multi-frame simultaneous denoising mechanisms, resulting in significant delays (e.g., 16 frames), making them impractical for real-time cameras. To overcome this limitation, we propose a multi-fusion gated recurrent Transformer network (GRTN) th...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Guo, Kai Choi, Seungwon Choi, Jongseong Kim, Lae-Hoon |
description | State-of-the-art (SOTA) video denoising methods employ multi-frame simultaneous denoising mechanisms, resulting in significant delays (e.g., 16 frames), making them impractical for real-time cameras. To overcome this limitation, we propose a multi-fusion gated recurrent Transformer network (GRTN) that achieves SOTA denoising performance with only a single-frame delay. Specifically, the spatial denoising module extracts features from the current frame, while the reset gate selects relevant information from the previous frame and fuses it with current frame features via the temporal denoising module. The update gate then further blends this result with the previous frame features, and the reconstruction module integrates it with the current frame. To robustly compute attention for noisy features, we propose a residual simplified Swin Transformer with Euclidean distance (RSSTE) in the spatial and temporal denoising modules. Comparative objective and subjective results show that our GRTN achieves denoising performance comparable to SOTA multi-frame delay networks, with only a single-frame delay. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3103020420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103020420</sourcerecordid><originalsourceid>FETCH-proquest_journals_31030204203</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQZcF9LEv62oVReKiLiV2I4SrZk6SfD6duEBXL3F-zoiUVrn2WykVE-k3j-klGoyVeOxTsR1Dgc2ZbClqWFtAlZwxDIyowtwYuP8jfiFDHsMH-InbF1J3BCbYN0ddrEOtqkRiugtOQ-thrOtkGCJjqxv0UB0b6b2mP7aF8NidVpssobpHdGHy4Miu3ZddC61VHKkpP5PfQGfB0XF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103020420</pqid></control><display><type>article</type><title>A Practical Gated Recurrent Transformer Network Incorporating Multiple Fusions for Video Denoising</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Guo, Kai ; Choi, Seungwon ; Choi, Jongseong ; Kim, Lae-Hoon</creator><creatorcontrib>Guo, Kai ; Choi, Seungwon ; Choi, Jongseong ; Kim, Lae-Hoon</creatorcontrib><description>State-of-the-art (SOTA) video denoising methods employ multi-frame simultaneous denoising mechanisms, resulting in significant delays (e.g., 16 frames), making them impractical for real-time cameras. To overcome this limitation, we propose a multi-fusion gated recurrent Transformer network (GRTN) that achieves SOTA denoising performance with only a single-frame delay. Specifically, the spatial denoising module extracts features from the current frame, while the reset gate selects relevant information from the previous frame and fuses it with current frame features via the temporal denoising module. The update gate then further blends this result with the previous frame features, and the reconstruction module integrates it with the current frame. To robustly compute attention for noisy features, we propose a residual simplified Swin Transformer with Euclidean distance (RSSTE) in the spatial and temporal denoising modules. Comparative objective and subjective results show that our GRTN achieves denoising performance comparable to SOTA multi-frame delay networks, with only a single-frame delay.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Delay ; Euclidean geometry ; Modules ; Noise reduction ; Real time ; Transformers</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3103020420?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Guo, Kai</creatorcontrib><creatorcontrib>Choi, Seungwon</creatorcontrib><creatorcontrib>Choi, Jongseong</creatorcontrib><creatorcontrib>Kim, Lae-Hoon</creatorcontrib><title>A Practical Gated Recurrent Transformer Network Incorporating Multiple Fusions for Video Denoising</title><title>arXiv.org</title><description>State-of-the-art (SOTA) video denoising methods employ multi-frame simultaneous denoising mechanisms, resulting in significant delays (e.g., 16 frames), making them impractical for real-time cameras. To overcome this limitation, we propose a multi-fusion gated recurrent Transformer network (GRTN) that achieves SOTA denoising performance with only a single-frame delay. Specifically, the spatial denoising module extracts features from the current frame, while the reset gate selects relevant information from the previous frame and fuses it with current frame features via the temporal denoising module. The update gate then further blends this result with the previous frame features, and the reconstruction module integrates it with the current frame. To robustly compute attention for noisy features, we propose a residual simplified Swin Transformer with Euclidean distance (RSSTE) in the spatial and temporal denoising modules. Comparative objective and subjective results show that our GRTN achieves denoising performance comparable to SOTA multi-frame delay networks, with only a single-frame delay.</description><subject>Delay</subject><subject>Euclidean geometry</subject><subject>Modules</subject><subject>Noise reduction</subject><subject>Real time</subject><subject>Transformers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQZcF9LEv62oVReKiLiV2I4SrZk6SfD6duEBXL3F-zoiUVrn2WykVE-k3j-klGoyVeOxTsR1Dgc2ZbClqWFtAlZwxDIyowtwYuP8jfiFDHsMH-InbF1J3BCbYN0ddrEOtqkRiugtOQ-thrOtkGCJjqxv0UB0b6b2mP7aF8NidVpssobpHdGHy4Miu3ZddC61VHKkpP5PfQGfB0XF</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Guo, Kai</creator><creator>Choi, Seungwon</creator><creator>Choi, Jongseong</creator><creator>Kim, Lae-Hoon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240910</creationdate><title>A Practical Gated Recurrent Transformer Network Incorporating Multiple Fusions for Video Denoising</title><author>Guo, Kai ; Choi, Seungwon ; Choi, Jongseong ; Kim, Lae-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31030204203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Delay</topic><topic>Euclidean geometry</topic><topic>Modules</topic><topic>Noise reduction</topic><topic>Real time</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Kai</creatorcontrib><creatorcontrib>Choi, Seungwon</creatorcontrib><creatorcontrib>Choi, Jongseong</creatorcontrib><creatorcontrib>Kim, Lae-Hoon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Kai</au><au>Choi, Seungwon</au><au>Choi, Jongseong</au><au>Kim, Lae-Hoon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Practical Gated Recurrent Transformer Network Incorporating Multiple Fusions for Video Denoising</atitle><jtitle>arXiv.org</jtitle><date>2024-09-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>State-of-the-art (SOTA) video denoising methods employ multi-frame simultaneous denoising mechanisms, resulting in significant delays (e.g., 16 frames), making them impractical for real-time cameras. To overcome this limitation, we propose a multi-fusion gated recurrent Transformer network (GRTN) that achieves SOTA denoising performance with only a single-frame delay. Specifically, the spatial denoising module extracts features from the current frame, while the reset gate selects relevant information from the previous frame and fuses it with current frame features via the temporal denoising module. The update gate then further blends this result with the previous frame features, and the reconstruction module integrates it with the current frame. To robustly compute attention for noisy features, we propose a residual simplified Swin Transformer with Euclidean distance (RSSTE) in the spatial and temporal denoising modules. Comparative objective and subjective results show that our GRTN achieves denoising performance comparable to SOTA multi-frame delay networks, with only a single-frame delay.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3103020420 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Delay Euclidean geometry Modules Noise reduction Real time Transformers |
title | A Practical Gated Recurrent Transformer Network Incorporating Multiple Fusions for Video Denoising |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Practical%20Gated%20Recurrent%20Transformer%20Network%20Incorporating%20Multiple%20Fusions%20for%20Video%20Denoising&rft.jtitle=arXiv.org&rft.au=Guo,%20Kai&rft.date=2024-09-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3103020420%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31030204203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103020420&rft_id=info:pmid/&rfr_iscdi=true |