Loading…
DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots
We present DemoStart, a novel auto-curriculum reinforcement learning method capable of learning complex manipulation behaviors on an arm equipped with a three-fingered robotic hand, from only a sparse reward and a handful of demonstrations in simulation. Learning from simulation drastically reduces...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bauza, Maria Chen, Jose Enrique Dalibard, Valentin Gileadi, Nimrod Hafner, Roland Martins, Murilo F Moore, Joss Pevceviciute, Rugile Laurens, Antoine Rao, Dushyant Zambelli, Martina Riedmiller, Martin Scholz, Jon Bousmalis, Konstantinos Nori, Francesco Heess, Nicolas |
description | We present DemoStart, a novel auto-curriculum reinforcement learning method capable of learning complex manipulation behaviors on an arm equipped with a three-fingered robotic hand, from only a sparse reward and a handful of demonstrations in simulation. Learning from simulation drastically reduces the development cycle of behavior generation, and domain randomization techniques are leveraged to achieve successful zero-shot sim-to-real transfer. Transferred policies are learned directly from raw pixels from multiple cameras and robot proprioception. Our approach outperforms policies learned from demonstrations on the real robot and requires 100 times fewer demonstrations, collected in simulation. More details and videos in https://sites.google.com/view/demostart. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3103020559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103020559</sourcerecordid><originalsourceid>FETCH-proquest_journals_31030205593</originalsourceid><addsrcrecordid>eNqNiskKwjAURYMgWLT_EHAdSBPjtHXAva4tsaaakqG-vODvW8EPcHUP95wRKYSUFVsvhJiQMqWOcy6WK6GULMh1b3w8owbc0i-GhKDRxsCcuVOdMbImA9gmu-yp7ntnhx8jTdazQYLRjr4tPqnPDi1rbXgYGBKIt4hpRsatdsmUv52S-fFw2Z1YD_GVTcK6ixnCoGpZcckFV2oj_6s-s4JEvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103020559</pqid></control><display><type>article</type><title>DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bauza, Maria ; Chen, Jose Enrique ; Dalibard, Valentin ; Gileadi, Nimrod ; Hafner, Roland ; Martins, Murilo F ; Moore, Joss ; Pevceviciute, Rugile ; Laurens, Antoine ; Rao, Dushyant ; Zambelli, Martina ; Riedmiller, Martin ; Scholz, Jon ; Bousmalis, Konstantinos ; Nori, Francesco ; Heess, Nicolas</creator><creatorcontrib>Bauza, Maria ; Chen, Jose Enrique ; Dalibard, Valentin ; Gileadi, Nimrod ; Hafner, Roland ; Martins, Murilo F ; Moore, Joss ; Pevceviciute, Rugile ; Laurens, Antoine ; Rao, Dushyant ; Zambelli, Martina ; Riedmiller, Martin ; Scholz, Jon ; Bousmalis, Konstantinos ; Nori, Francesco ; Heess, Nicolas</creatorcontrib><description>We present DemoStart, a novel auto-curriculum reinforcement learning method capable of learning complex manipulation behaviors on an arm equipped with a three-fingered robotic hand, from only a sparse reward and a handful of demonstrations in simulation. Learning from simulation drastically reduces the development cycle of behavior generation, and domain randomization techniques are leveraged to achieve successful zero-shot sim-to-real transfer. Transferred policies are learned directly from raw pixels from multiple cameras and robot proprioception. Our approach outperforms policies learned from demonstrations on the real robot and requires 100 times fewer demonstrations, collected in simulation. More details and videos in https://sites.google.com/view/demostart.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curricula ; End effectors ; Policies ; Robot learning ; Robots</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3103020559?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bauza, Maria</creatorcontrib><creatorcontrib>Chen, Jose Enrique</creatorcontrib><creatorcontrib>Dalibard, Valentin</creatorcontrib><creatorcontrib>Gileadi, Nimrod</creatorcontrib><creatorcontrib>Hafner, Roland</creatorcontrib><creatorcontrib>Martins, Murilo F</creatorcontrib><creatorcontrib>Moore, Joss</creatorcontrib><creatorcontrib>Pevceviciute, Rugile</creatorcontrib><creatorcontrib>Laurens, Antoine</creatorcontrib><creatorcontrib>Rao, Dushyant</creatorcontrib><creatorcontrib>Zambelli, Martina</creatorcontrib><creatorcontrib>Riedmiller, Martin</creatorcontrib><creatorcontrib>Scholz, Jon</creatorcontrib><creatorcontrib>Bousmalis, Konstantinos</creatorcontrib><creatorcontrib>Nori, Francesco</creatorcontrib><creatorcontrib>Heess, Nicolas</creatorcontrib><title>DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots</title><title>arXiv.org</title><description>We present DemoStart, a novel auto-curriculum reinforcement learning method capable of learning complex manipulation behaviors on an arm equipped with a three-fingered robotic hand, from only a sparse reward and a handful of demonstrations in simulation. Learning from simulation drastically reduces the development cycle of behavior generation, and domain randomization techniques are leveraged to achieve successful zero-shot sim-to-real transfer. Transferred policies are learned directly from raw pixels from multiple cameras and robot proprioception. Our approach outperforms policies learned from demonstrations on the real robot and requires 100 times fewer demonstrations, collected in simulation. More details and videos in https://sites.google.com/view/demostart.</description><subject>Curricula</subject><subject>End effectors</subject><subject>Policies</subject><subject>Robot learning</subject><subject>Robots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiskKwjAURYMgWLT_EHAdSBPjtHXAva4tsaaakqG-vODvW8EPcHUP95wRKYSUFVsvhJiQMqWOcy6WK6GULMh1b3w8owbc0i-GhKDRxsCcuVOdMbImA9gmu-yp7ntnhx8jTdazQYLRjr4tPqnPDi1rbXgYGBKIt4hpRsatdsmUv52S-fFw2Z1YD_GVTcK6ixnCoGpZcckFV2oj_6s-s4JEvw</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Bauza, Maria</creator><creator>Chen, Jose Enrique</creator><creator>Dalibard, Valentin</creator><creator>Gileadi, Nimrod</creator><creator>Hafner, Roland</creator><creator>Martins, Murilo F</creator><creator>Moore, Joss</creator><creator>Pevceviciute, Rugile</creator><creator>Laurens, Antoine</creator><creator>Rao, Dushyant</creator><creator>Zambelli, Martina</creator><creator>Riedmiller, Martin</creator><creator>Scholz, Jon</creator><creator>Bousmalis, Konstantinos</creator><creator>Nori, Francesco</creator><creator>Heess, Nicolas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240912</creationdate><title>DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots</title><author>Bauza, Maria ; Chen, Jose Enrique ; Dalibard, Valentin ; Gileadi, Nimrod ; Hafner, Roland ; Martins, Murilo F ; Moore, Joss ; Pevceviciute, Rugile ; Laurens, Antoine ; Rao, Dushyant ; Zambelli, Martina ; Riedmiller, Martin ; Scholz, Jon ; Bousmalis, Konstantinos ; Nori, Francesco ; Heess, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31030205593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Curricula</topic><topic>End effectors</topic><topic>Policies</topic><topic>Robot learning</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Bauza, Maria</creatorcontrib><creatorcontrib>Chen, Jose Enrique</creatorcontrib><creatorcontrib>Dalibard, Valentin</creatorcontrib><creatorcontrib>Gileadi, Nimrod</creatorcontrib><creatorcontrib>Hafner, Roland</creatorcontrib><creatorcontrib>Martins, Murilo F</creatorcontrib><creatorcontrib>Moore, Joss</creatorcontrib><creatorcontrib>Pevceviciute, Rugile</creatorcontrib><creatorcontrib>Laurens, Antoine</creatorcontrib><creatorcontrib>Rao, Dushyant</creatorcontrib><creatorcontrib>Zambelli, Martina</creatorcontrib><creatorcontrib>Riedmiller, Martin</creatorcontrib><creatorcontrib>Scholz, Jon</creatorcontrib><creatorcontrib>Bousmalis, Konstantinos</creatorcontrib><creatorcontrib>Nori, Francesco</creatorcontrib><creatorcontrib>Heess, Nicolas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauza, Maria</au><au>Chen, Jose Enrique</au><au>Dalibard, Valentin</au><au>Gileadi, Nimrod</au><au>Hafner, Roland</au><au>Martins, Murilo F</au><au>Moore, Joss</au><au>Pevceviciute, Rugile</au><au>Laurens, Antoine</au><au>Rao, Dushyant</au><au>Zambelli, Martina</au><au>Riedmiller, Martin</au><au>Scholz, Jon</au><au>Bousmalis, Konstantinos</au><au>Nori, Francesco</au><au>Heess, Nicolas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots</atitle><jtitle>arXiv.org</jtitle><date>2024-09-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present DemoStart, a novel auto-curriculum reinforcement learning method capable of learning complex manipulation behaviors on an arm equipped with a three-fingered robotic hand, from only a sparse reward and a handful of demonstrations in simulation. Learning from simulation drastically reduces the development cycle of behavior generation, and domain randomization techniques are leveraged to achieve successful zero-shot sim-to-real transfer. Transferred policies are learned directly from raw pixels from multiple cameras and robot proprioception. Our approach outperforms policies learned from demonstrations on the real robot and requires 100 times fewer demonstrations, collected in simulation. More details and videos in https://sites.google.com/view/demostart.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3103020559 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Curricula End effectors Policies Robot learning Robots |
title | DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DemoStart:%20Demonstration-led%20auto-curriculum%20applied%20to%20sim-to-real%20with%20multi-fingered%20robots&rft.jtitle=arXiv.org&rft.au=Bauza,%20Maria&rft.date=2024-09-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3103020559%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31030205593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103020559&rft_id=info:pmid/&rfr_iscdi=true |