Loading…

Unsupervised machine learning for the classification of astrophysical X-ray sources

ABSTRACT The automatic classification of X-ray detections is a necessary step in extracting astrophysical information from compiled catalogues of astrophysical sources. Classification is useful for the study of individual objects, statistics for population studies, as well as for anomaly detection,...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2024-03, Vol.528 (3), p.4852-4871
Main Authors: Pérez-Díaz, Víctor Samuel, Martínez-Galarza, Juan Rafael, Caicedo, Alexander, D’Abrusco, Raffaele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c293t-8aafa00e5b567ba11345503093249f2288915c9dc2daad0bbd2d8a52f300b7133
container_end_page 4871
container_issue 3
container_start_page 4852
container_title Monthly notices of the Royal Astronomical Society
container_volume 528
creator Pérez-Díaz, Víctor Samuel
Martínez-Galarza, Juan Rafael
Caicedo, Alexander
D’Abrusco, Raffaele
description ABSTRACT The automatic classification of X-ray detections is a necessary step in extracting astrophysical information from compiled catalogues of astrophysical sources. Classification is useful for the study of individual objects, statistics for population studies, as well as for anomaly detection, that is, the identification of new unexplored phenomena, including transients and spectrally extreme sources. Despite the importance of this task, classification remains challenging in X-ray astronomy due to the lack of optical counterparts and representative training sets. We develop an alternative methodology that employs an unsupervised machine learning approach to provide probabilistic classes to Chandra Source Catalog sources with a limited number of labelled sources, and without ancillary information from optical and infrared catalogues. We provide a catalogue of probabilistic classes for 8756 sources, comprising a total of 14 507 detections, and demonstrate the success of the method at identifying emission from young stellar objects, as well as distinguishing between small- and large-scale compact accretors with a significant level of confidence. We investigate the consistency between the distribution of features among classified objects and well-established astrophysical hypotheses such as the unified active galactic nucleus model. This provides interpretability to the probabilistic classifier. Code and tables are available publicly through GitHub. We provide a web playground for readers to explore our final classification at https://umlcaxs-playground.streamlit.app.
doi_str_mv 10.1093/mnras/stae260
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3103059317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stae260</oup_id><sourcerecordid>3103059317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8aafa00e5b567ba11345503093249f2288915c9dc2daad0bbd2d8a52f300b7133</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK4evQe8eKk7SZp-HGXxCxY86IK3Mk0Tt0u3qZlW2H9vdPfuaWB4eN-Zh7FrAXcCSrXY9QFpQSNamcEJmwmV6USWWXbKZgBKJ0UuxDm7INoCQKpkNmNv656mwYbvlmzDd2g2bW95ZzH0bf_JnQ983FhuOiRqXWtwbH3PveNIY_DDZk9x1_GPJOCek5-CsXTJzhx2ZK-Oc87Wjw_vy-dk9fr0srxfJUaWakwKRIcAVtc6y2sUQqVag4qfyLR0UhZFKbQpGyMbxAbqupFNgVo6BVDnQqk5uznkDsF_TZbGahsP6GNlpUQM0qUSeaSSA2WCJwrWVUNodxj2lYDq11v15606eov87YH30_AP-gOlyHF9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103059317</pqid></control><display><type>article</type><title>Unsupervised machine learning for the classification of astrophysical X-ray sources</title><source>Open Access: Oxford University Press Open Journals</source><source>EZB Electronic Journals Library</source><creator>Pérez-Díaz, Víctor Samuel ; Martínez-Galarza, Juan Rafael ; Caicedo, Alexander ; D’Abrusco, Raffaele</creator><creatorcontrib>Pérez-Díaz, Víctor Samuel ; Martínez-Galarza, Juan Rafael ; Caicedo, Alexander ; D’Abrusco, Raffaele</creatorcontrib><description>ABSTRACT The automatic classification of X-ray detections is a necessary step in extracting astrophysical information from compiled catalogues of astrophysical sources. Classification is useful for the study of individual objects, statistics for population studies, as well as for anomaly detection, that is, the identification of new unexplored phenomena, including transients and spectrally extreme sources. Despite the importance of this task, classification remains challenging in X-ray astronomy due to the lack of optical counterparts and representative training sets. We develop an alternative methodology that employs an unsupervised machine learning approach to provide probabilistic classes to Chandra Source Catalog sources with a limited number of labelled sources, and without ancillary information from optical and infrared catalogues. We provide a catalogue of probabilistic classes for 8756 sources, comprising a total of 14 507 detections, and demonstrate the success of the method at identifying emission from young stellar objects, as well as distinguishing between small- and large-scale compact accretors with a significant level of confidence. We investigate the consistency between the distribution of features among classified objects and well-established astrophysical hypotheses such as the unified active galactic nucleus model. This provides interpretability to the probabilistic classifier. Code and tables are available publicly through GitHub. We provide a web playground for readers to explore our final classification at https://umlcaxs-playground.streamlit.app.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stae260</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Active galactic nuclei ; Anomalies ; Classification ; Infrared astronomy ; Machine learning ; Object recognition ; Optical counterparts (astronomy) ; Playgrounds ; Unsupervised learning ; X ray sources ; X-ray astronomy</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2024-03, Vol.528 (3), p.4852-4871</ispartof><rights>2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024</rights><rights>2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-8aafa00e5b567ba11345503093249f2288915c9dc2daad0bbd2d8a52f300b7133</cites><orcidid>0000-0003-3073-0605 ; 0009-0000-5483-2652 ; 0000-0002-2073-8008 ; 0000-0002-5069-0324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Pérez-Díaz, Víctor Samuel</creatorcontrib><creatorcontrib>Martínez-Galarza, Juan Rafael</creatorcontrib><creatorcontrib>Caicedo, Alexander</creatorcontrib><creatorcontrib>D’Abrusco, Raffaele</creatorcontrib><title>Unsupervised machine learning for the classification of astrophysical X-ray sources</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The automatic classification of X-ray detections is a necessary step in extracting astrophysical information from compiled catalogues of astrophysical sources. Classification is useful for the study of individual objects, statistics for population studies, as well as for anomaly detection, that is, the identification of new unexplored phenomena, including transients and spectrally extreme sources. Despite the importance of this task, classification remains challenging in X-ray astronomy due to the lack of optical counterparts and representative training sets. We develop an alternative methodology that employs an unsupervised machine learning approach to provide probabilistic classes to Chandra Source Catalog sources with a limited number of labelled sources, and without ancillary information from optical and infrared catalogues. We provide a catalogue of probabilistic classes for 8756 sources, comprising a total of 14 507 detections, and demonstrate the success of the method at identifying emission from young stellar objects, as well as distinguishing between small- and large-scale compact accretors with a significant level of confidence. We investigate the consistency between the distribution of features among classified objects and well-established astrophysical hypotheses such as the unified active galactic nucleus model. This provides interpretability to the probabilistic classifier. Code and tables are available publicly through GitHub. We provide a web playground for readers to explore our final classification at https://umlcaxs-playground.streamlit.app.</description><subject>Active galactic nuclei</subject><subject>Anomalies</subject><subject>Classification</subject><subject>Infrared astronomy</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Optical counterparts (astronomy)</subject><subject>Playgrounds</subject><subject>Unsupervised learning</subject><subject>X ray sources</subject><subject>X-ray astronomy</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkE1LxDAQhoMouK4evQe8eKk7SZp-HGXxCxY86IK3Mk0Tt0u3qZlW2H9vdPfuaWB4eN-Zh7FrAXcCSrXY9QFpQSNamcEJmwmV6USWWXbKZgBKJ0UuxDm7INoCQKpkNmNv656mwYbvlmzDd2g2bW95ZzH0bf_JnQ983FhuOiRqXWtwbH3PveNIY_DDZk9x1_GPJOCek5-CsXTJzhx2ZK-Oc87Wjw_vy-dk9fr0srxfJUaWakwKRIcAVtc6y2sUQqVag4qfyLR0UhZFKbQpGyMbxAbqupFNgVo6BVDnQqk5uznkDsF_TZbGahsP6GNlpUQM0qUSeaSSA2WCJwrWVUNodxj2lYDq11v15606eov87YH30_AP-gOlyHF9</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Pérez-Díaz, Víctor Samuel</creator><creator>Martínez-Galarza, Juan Rafael</creator><creator>Caicedo, Alexander</creator><creator>D’Abrusco, Raffaele</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3073-0605</orcidid><orcidid>https://orcid.org/0009-0000-5483-2652</orcidid><orcidid>https://orcid.org/0000-0002-2073-8008</orcidid><orcidid>https://orcid.org/0000-0002-5069-0324</orcidid></search><sort><creationdate>20240301</creationdate><title>Unsupervised machine learning for the classification of astrophysical X-ray sources</title><author>Pérez-Díaz, Víctor Samuel ; Martínez-Galarza, Juan Rafael ; Caicedo, Alexander ; D’Abrusco, Raffaele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8aafa00e5b567ba11345503093249f2288915c9dc2daad0bbd2d8a52f300b7133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active galactic nuclei</topic><topic>Anomalies</topic><topic>Classification</topic><topic>Infrared astronomy</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Optical counterparts (astronomy)</topic><topic>Playgrounds</topic><topic>Unsupervised learning</topic><topic>X ray sources</topic><topic>X-ray astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Díaz, Víctor Samuel</creatorcontrib><creatorcontrib>Martínez-Galarza, Juan Rafael</creatorcontrib><creatorcontrib>Caicedo, Alexander</creatorcontrib><creatorcontrib>D’Abrusco, Raffaele</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Díaz, Víctor Samuel</au><au>Martínez-Galarza, Juan Rafael</au><au>Caicedo, Alexander</au><au>D’Abrusco, Raffaele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised machine learning for the classification of astrophysical X-ray sources</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>528</volume><issue>3</issue><spage>4852</spage><epage>4871</epage><pages>4852-4871</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The automatic classification of X-ray detections is a necessary step in extracting astrophysical information from compiled catalogues of astrophysical sources. Classification is useful for the study of individual objects, statistics for population studies, as well as for anomaly detection, that is, the identification of new unexplored phenomena, including transients and spectrally extreme sources. Despite the importance of this task, classification remains challenging in X-ray astronomy due to the lack of optical counterparts and representative training sets. We develop an alternative methodology that employs an unsupervised machine learning approach to provide probabilistic classes to Chandra Source Catalog sources with a limited number of labelled sources, and without ancillary information from optical and infrared catalogues. We provide a catalogue of probabilistic classes for 8756 sources, comprising a total of 14 507 detections, and demonstrate the success of the method at identifying emission from young stellar objects, as well as distinguishing between small- and large-scale compact accretors with a significant level of confidence. We investigate the consistency between the distribution of features among classified objects and well-established astrophysical hypotheses such as the unified active galactic nucleus model. This provides interpretability to the probabilistic classifier. Code and tables are available publicly through GitHub. We provide a web playground for readers to explore our final classification at https://umlcaxs-playground.streamlit.app.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stae260</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3073-0605</orcidid><orcidid>https://orcid.org/0009-0000-5483-2652</orcidid><orcidid>https://orcid.org/0000-0002-2073-8008</orcidid><orcidid>https://orcid.org/0000-0002-5069-0324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2024-03, Vol.528 (3), p.4852-4871
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_3103059317
source Open Access: Oxford University Press Open Journals; EZB Electronic Journals Library
subjects Active galactic nuclei
Anomalies
Classification
Infrared astronomy
Machine learning
Object recognition
Optical counterparts (astronomy)
Playgrounds
Unsupervised learning
X ray sources
X-ray astronomy
title Unsupervised machine learning for the classification of astrophysical X-ray sources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20machine%20learning%20for%20the%20classification%20of%20astrophysical%20X-ray%20sources&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=P%C3%A9rez-D%C3%ADaz,%20V%C3%ADctor%20Samuel&rft.date=2024-03-01&rft.volume=528&rft.issue=3&rft.spage=4852&rft.epage=4871&rft.pages=4852-4871&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stae260&rft_dat=%3Cproquest_cross%3E3103059317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-8aafa00e5b567ba11345503093249f2288915c9dc2daad0bbd2d8a52f300b7133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103059317&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stae260&rfr_iscdi=true