Loading…

Torsion at the Threshold for Mapping Class Groups

The mapping class group \({\Gamma}_g^ 1\) of a closed orientable surface of genus \(g \geq 1\) with one marked point can be identified, by the Nielsen action, with a subgroup of the group of orientation preserving homeomorphims of the circle. This inclusion pulls back the powers of the discrete univ...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Jekel, Solomon, Rita Jiménez Rolland
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jekel, Solomon
Rita Jiménez Rolland
description The mapping class group \({\Gamma}_g^ 1\) of a closed orientable surface of genus \(g \geq 1\) with one marked point can be identified, by the Nielsen action, with a subgroup of the group of orientation preserving homeomorphims of the circle. This inclusion pulls back the powers of the discrete universal Euler class producing classes \(\text{E}^n \in H^{2n}({\Gamma}_g^1;\mathbb{Z})\) for all \(n\geq 1\). In this paper we study the power \(n=g,\) and prove: \(\text{E}^g\) is a torsion class which generates a cyclic subgroup of \(H^{2g}({\Gamma}_g^1;\mathbb{Z})\) whose order is a positive integer multiple of \(4g(2g+1)(2g-1)\).
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3103642504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103642504</sourcerecordid><originalsourceid>FETCH-proquest_journals_31036425043</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLuTSVPfiZXHLXgKmpiXkxJzk_XXwAZz-4fs3rJFKie7cS7ljLdHKOZfDSWqtGiYMZlowgi1QvAPjsyOP4QkzZnjYlJb4gjFYIrhlrIkObDvbQK79dc-O14sZ713K-K6OyrRizfFLkxJcDb3UvFf_XR96-jMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103642504</pqid></control><display><type>article</type><title>Torsion at the Threshold for Mapping Class Groups</title><source>Publicly Available Content Database</source><creator>Jekel, Solomon ; Rita Jiménez Rolland</creator><creatorcontrib>Jekel, Solomon ; Rita Jiménez Rolland</creatorcontrib><description>The mapping class group \({\Gamma}_g^ 1\) of a closed orientable surface of genus \(g \geq 1\) with one marked point can be identified, by the Nielsen action, with a subgroup of the group of orientation preserving homeomorphims of the circle. This inclusion pulls back the powers of the discrete universal Euler class producing classes \(\text{E}^n \in H^{2n}({\Gamma}_g^1;\mathbb{Z})\) for all \(n\geq 1\). In this paper we study the power \(n=g,\) and prove: \(\text{E}^g\) is a torsion class which generates a cyclic subgroup of \(H^{2g}({\Gamma}_g^1;\mathbb{Z})\) whose order is a positive integer multiple of \(4g(2g+1)(2g-1)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mapping ; Subgroups</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3103642504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jekel, Solomon</creatorcontrib><creatorcontrib>Rita Jiménez Rolland</creatorcontrib><title>Torsion at the Threshold for Mapping Class Groups</title><title>arXiv.org</title><description>The mapping class group \({\Gamma}_g^ 1\) of a closed orientable surface of genus \(g \geq 1\) with one marked point can be identified, by the Nielsen action, with a subgroup of the group of orientation preserving homeomorphims of the circle. This inclusion pulls back the powers of the discrete universal Euler class producing classes \(\text{E}^n \in H^{2n}({\Gamma}_g^1;\mathbb{Z})\) for all \(n\geq 1\). In this paper we study the power \(n=g,\) and prove: \(\text{E}^g\) is a torsion class which generates a cyclic subgroup of \(H^{2g}({\Gamma}_g^1;\mathbb{Z})\) whose order is a positive integer multiple of \(4g(2g+1)(2g-1)\).</description><subject>Mapping</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLuTSVPfiZXHLXgKmpiXkxJzk_XXwAZz-4fs3rJFKie7cS7ljLdHKOZfDSWqtGiYMZlowgi1QvAPjsyOP4QkzZnjYlJb4gjFYIrhlrIkObDvbQK79dc-O14sZ713K-K6OyrRizfFLkxJcDb3UvFf_XR96-jMI</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Jekel, Solomon</creator><creator>Rita Jiménez Rolland</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240911</creationdate><title>Torsion at the Threshold for Mapping Class Groups</title><author>Jekel, Solomon ; Rita Jiménez Rolland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31036425043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mapping</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Jekel, Solomon</creatorcontrib><creatorcontrib>Rita Jiménez Rolland</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jekel, Solomon</au><au>Rita Jiménez Rolland</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Torsion at the Threshold for Mapping Class Groups</atitle><jtitle>arXiv.org</jtitle><date>2024-09-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The mapping class group \({\Gamma}_g^ 1\) of a closed orientable surface of genus \(g \geq 1\) with one marked point can be identified, by the Nielsen action, with a subgroup of the group of orientation preserving homeomorphims of the circle. This inclusion pulls back the powers of the discrete universal Euler class producing classes \(\text{E}^n \in H^{2n}({\Gamma}_g^1;\mathbb{Z})\) for all \(n\geq 1\). In this paper we study the power \(n=g,\) and prove: \(\text{E}^g\) is a torsion class which generates a cyclic subgroup of \(H^{2g}({\Gamma}_g^1;\mathbb{Z})\) whose order is a positive integer multiple of \(4g(2g+1)(2g-1)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3103642504
source Publicly Available Content Database
subjects Mapping
Subgroups
title Torsion at the Threshold for Mapping Class Groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Torsion%20at%20the%20Threshold%20for%20Mapping%20Class%20Groups&rft.jtitle=arXiv.org&rft.au=Jekel,%20Solomon&rft.date=2024-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3103642504%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31036425043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103642504&rft_id=info:pmid/&rfr_iscdi=true