Loading…
Floquet-engineered Emergent Massive Nambu-Goldstone Modes
We present a general framework to implement massive Nambu-Goldstone quasi-particles in driven many-body systems. The underlying mechanism leverages an explicit Lie group structure imprinted into an effective Hamiltonian that governs the dynamics of slow degrees of freedom; the resulting emergent con...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a general framework to implement massive Nambu-Goldstone quasi-particles in driven many-body systems. The underlying mechanism leverages an explicit Lie group structure imprinted into an effective Hamiltonian that governs the dynamics of slow degrees of freedom; the resulting emergent continuous symmetry is weakly explicitly broken, giving rise to a massive Nambu-Goldstone mode, with a spectral mass gap scaling linearly with the drive period. We discuss explicit and experimentally implementable realizations, such as Heisenberg-like spin models that support gapped spin-wave excitations. We provide a protocol to certify the existence of the massive Nambu-Goldstone mode from the dynamics of specific observables, and analyse the dispersion spectrum and their lifetime in the presence of weak explicit symmetry breaking. |
---|---|
ISSN: | 2331-8422 |