Loading…

Adoption of Multi-Modal Transportation for Configuring Sustainable Agri-Food Supply Chains in Constrained Environments

Agri-food supply chains have the potential to make a significant contribution to achieving sustainable development goals through ongoing improvements in their configurations. A range of strategic, tactical, and operational level decisions pertaining to the design and operation of sustainable supply...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-09, Vol.16 (17), p.7601
Main Authors: Chandrasiri, Chethana, Kiridena, Senevi, Dharmapriya, Subodha, Kulatunga, Asela K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Agri-food supply chains have the potential to make a significant contribution to achieving sustainable development goals through ongoing improvements in their configurations. A range of strategic, tactical, and operational level decisions pertaining to the design and operation of sustainable supply chains have been studied in the extant literature. However, investigations into the adoption of multi-modal transportation as a strategic decision in the context of agri-food supply chains operating in constrained environments are limited. As such, in this study, the adoption of bi-modal transportation for the domestic vegetable supply chain in a developing country context under certain constraints was examined. A mixed-integer linear programming model was developed to determine the volume and direction of the product flow to achieve the minimum total food-miles and smallest emissions footprint. As a case study, a Sri Lankan mainstream vegetable supply chain was used to investigate the applicability of a combination of truck and railway modes to transport vegetables from farms to retailer locations via economic (consolidation) centers. The adoption of a bi-modal transportation structure demonstrated the potential to reduce food miles by 32%, transportation costs by 36%, contributions to global warming potential by 35%, and empty truck hauls by 38%, compared to a structure with truck-based, uni-modal transportation.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16177601