Loading…

An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins

The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) tha...

Full description

Saved in:
Bibliographic Details
Published in:Biomicrofluidics 2024-09, Vol.18 (5), p.054105
Main Authors: Jones, Emily J., Skinner, Benjamin M., Parker, Aimee, Baldwin, Lydia R., Greenman, John, Carding, Simon R., Funnell, Simon G. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3
container_end_page
container_issue 5
container_start_page 054105
container_title Biomicrofluidics
container_volume 18
creator Jones, Emily J.
Skinner, Benjamin M.
Parker, Aimee
Baldwin, Lydia R.
Greenman, John
Carding, Simon R.
Funnell, Simon G. P.
description The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut–brain axis (GBA). Our dual-flow GIT–brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT–brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.
doi_str_mv 10.1063/5.0200459
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgijNeFr6ABNyoUM2lSZvlIN5AUVDXJU3TmQxtMiapOG9vdEYRF65yFl9-Dv8B4ACjM4w4PWdniCCUM7EBxlhQkmHEys1f8wjshDBHiOGCkG0wooKUCAsyBnFiobHwzUTvYD900WTOT6WFvVHeLWbLYFznpkbJDoZliLqHx_ePTycwuvTvTYdopjJqGGcaToeYRZfVXqbE6KUNnVMyGmeha6HVg3fRvRsb9sBWK7ug99fvLni5uny-uMnuHq5vLyZ3mSK0jFmp2rJQQmPZtA2VqslrSnJe5zQXQrWM8qZQhBNWa0SkqNOsOOUFlQUXhEu6C45XuQvvXoe0a9WboHTXSavdECqauskFpaxM9OgPnbvB27Tdp8oxL6lgSZ2sVOomBK_bauFNL_2ywqj6PEXFqvUpkj1cJw51r5sf-d19AqcrEJSJXzX9k_YBrCaRZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104168395</pqid></control><display><type>article</type><title>An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jones, Emily J. ; Skinner, Benjamin M. ; Parker, Aimee ; Baldwin, Lydia R. ; Greenman, John ; Carding, Simon R. ; Funnell, Simon G. P.</creator><creatorcontrib>Jones, Emily J. ; Skinner, Benjamin M. ; Parker, Aimee ; Baldwin, Lydia R. ; Greenman, John ; Carding, Simon R. ; Funnell, Simon G. P.</creatorcontrib><description>The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut–brain axis (GBA). Our dual-flow GIT–brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT–brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/5.0200459</identifier><identifier>PMID: 39280192</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Brain ; Cell death ; Cell membranes ; Dopamine ; Epithelium ; Gastrointestinal system ; Image analysis ; Impact analysis ; Parkinson's disease ; Peripheral nervous system ; Toxicity ; Toxins</subject><ispartof>Biomicrofluidics, 2024-09, Vol.18 (5), p.054105</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3</cites><orcidid>0000-0002-6003-6051 ; 0000-0002-3040-1353 ; 0009-0006-4047-9775 ; 0000-0002-4254-2751 ; 0000-0003-1765-9656 ; 0000-0002-2383-9701 ; 0000-0002-7152-1167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39280192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Emily J.</creatorcontrib><creatorcontrib>Skinner, Benjamin M.</creatorcontrib><creatorcontrib>Parker, Aimee</creatorcontrib><creatorcontrib>Baldwin, Lydia R.</creatorcontrib><creatorcontrib>Greenman, John</creatorcontrib><creatorcontrib>Carding, Simon R.</creatorcontrib><creatorcontrib>Funnell, Simon G. P.</creatorcontrib><title>An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut–brain axis (GBA). Our dual-flow GIT–brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT–brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.</description><subject>Brain</subject><subject>Cell death</subject><subject>Cell membranes</subject><subject>Dopamine</subject><subject>Epithelium</subject><subject>Gastrointestinal system</subject><subject>Image analysis</subject><subject>Impact analysis</subject><subject>Parkinson's disease</subject><subject>Peripheral nervous system</subject><subject>Toxicity</subject><subject>Toxins</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90ctKxDAUBuAgijNeFr6ABNyoUM2lSZvlIN5AUVDXJU3TmQxtMiapOG9vdEYRF65yFl9-Dv8B4ACjM4w4PWdniCCUM7EBxlhQkmHEys1f8wjshDBHiOGCkG0wooKUCAsyBnFiobHwzUTvYD900WTOT6WFvVHeLWbLYFznpkbJDoZliLqHx_ePTycwuvTvTYdopjJqGGcaToeYRZfVXqbE6KUNnVMyGmeha6HVg3fRvRsb9sBWK7ug99fvLni5uny-uMnuHq5vLyZ3mSK0jFmp2rJQQmPZtA2VqslrSnJe5zQXQrWM8qZQhBNWa0SkqNOsOOUFlQUXhEu6C45XuQvvXoe0a9WboHTXSavdECqauskFpaxM9OgPnbvB27Tdp8oxL6lgSZ2sVOomBK_bauFNL_2ywqj6PEXFqvUpkj1cJw51r5sf-d19AqcrEJSJXzX9k_YBrCaRZA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Jones, Emily J.</creator><creator>Skinner, Benjamin M.</creator><creator>Parker, Aimee</creator><creator>Baldwin, Lydia R.</creator><creator>Greenman, John</creator><creator>Carding, Simon R.</creator><creator>Funnell, Simon G. P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6003-6051</orcidid><orcidid>https://orcid.org/0000-0002-3040-1353</orcidid><orcidid>https://orcid.org/0009-0006-4047-9775</orcidid><orcidid>https://orcid.org/0000-0002-4254-2751</orcidid><orcidid>https://orcid.org/0000-0003-1765-9656</orcidid><orcidid>https://orcid.org/0000-0002-2383-9701</orcidid><orcidid>https://orcid.org/0000-0002-7152-1167</orcidid></search><sort><creationdate>202409</creationdate><title>An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins</title><author>Jones, Emily J. ; Skinner, Benjamin M. ; Parker, Aimee ; Baldwin, Lydia R. ; Greenman, John ; Carding, Simon R. ; Funnell, Simon G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Cell death</topic><topic>Cell membranes</topic><topic>Dopamine</topic><topic>Epithelium</topic><topic>Gastrointestinal system</topic><topic>Image analysis</topic><topic>Impact analysis</topic><topic>Parkinson's disease</topic><topic>Peripheral nervous system</topic><topic>Toxicity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Emily J.</creatorcontrib><creatorcontrib>Skinner, Benjamin M.</creatorcontrib><creatorcontrib>Parker, Aimee</creatorcontrib><creatorcontrib>Baldwin, Lydia R.</creatorcontrib><creatorcontrib>Greenman, John</creatorcontrib><creatorcontrib>Carding, Simon R.</creatorcontrib><creatorcontrib>Funnell, Simon G. P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Emily J.</au><au>Skinner, Benjamin M.</au><au>Parker, Aimee</au><au>Baldwin, Lydia R.</au><au>Greenman, John</au><au>Carding, Simon R.</au><au>Funnell, Simon G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2024-09</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>054105</spage><pages>054105-</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut–brain axis (GBA). Our dual-flow GIT–brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT–brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39280192</pmid><doi>10.1063/5.0200459</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6003-6051</orcidid><orcidid>https://orcid.org/0000-0002-3040-1353</orcidid><orcidid>https://orcid.org/0009-0006-4047-9775</orcidid><orcidid>https://orcid.org/0000-0002-4254-2751</orcidid><orcidid>https://orcid.org/0000-0003-1765-9656</orcidid><orcidid>https://orcid.org/0000-0002-2383-9701</orcidid><orcidid>https://orcid.org/0000-0002-7152-1167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2024-09, Vol.18 (5), p.054105
issn 1932-1058
1932-1058
language eng
recordid cdi_proquest_journals_3104168395
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Brain
Cell death
Cell membranes
Dopamine
Epithelium
Gastrointestinal system
Image analysis
Impact analysis
Parkinson's disease
Peripheral nervous system
Toxicity
Toxins
title An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in%20vitro%20multi-organ%20microphysiological%20system%20(MPS)%20to%20investigate%20the%20gut-to-brain%20translocation%20of%20neurotoxins&rft.jtitle=Biomicrofluidics&rft.au=Jones,%20Emily%20J.&rft.date=2024-09&rft.volume=18&rft.issue=5&rft.spage=054105&rft.pages=054105-&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/5.0200459&rft_dat=%3Cproquest_scita%3E3104168395%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104168395&rft_id=info:pmid/39280192&rfr_iscdi=true