Loading…
An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins
The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) tha...
Saved in:
Published in: | Biomicrofluidics 2024-09, Vol.18 (5), p.054105 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3 |
container_end_page | |
container_issue | 5 |
container_start_page | 054105 |
container_title | Biomicrofluidics |
container_volume | 18 |
creator | Jones, Emily J. Skinner, Benjamin M. Parker, Aimee Baldwin, Lydia R. Greenman, John Carding, Simon R. Funnell, Simon G. P. |
description | The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut–brain axis (GBA). Our dual-flow GIT–brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT–brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death. |
doi_str_mv | 10.1063/5.0200459 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3104168395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104168395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgijNeFr6ABNyoUM2lSZvlIN5AUVDXJU3TmQxtMiapOG9vdEYRF65yFl9-Dv8B4ACjM4w4PWdniCCUM7EBxlhQkmHEys1f8wjshDBHiOGCkG0wooKUCAsyBnFiobHwzUTvYD900WTOT6WFvVHeLWbLYFznpkbJDoZliLqHx_ePTycwuvTvTYdopjJqGGcaToeYRZfVXqbE6KUNnVMyGmeha6HVg3fRvRsb9sBWK7ug99fvLni5uny-uMnuHq5vLyZ3mSK0jFmp2rJQQmPZtA2VqslrSnJe5zQXQrWM8qZQhBNWa0SkqNOsOOUFlQUXhEu6C45XuQvvXoe0a9WboHTXSavdECqauskFpaxM9OgPnbvB27Tdp8oxL6lgSZ2sVOomBK_bauFNL_2ywqj6PEXFqvUpkj1cJw51r5sf-d19AqcrEJSJXzX9k_YBrCaRZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104168395</pqid></control><display><type>article</type><title>An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jones, Emily J. ; Skinner, Benjamin M. ; Parker, Aimee ; Baldwin, Lydia R. ; Greenman, John ; Carding, Simon R. ; Funnell, Simon G. P.</creator><creatorcontrib>Jones, Emily J. ; Skinner, Benjamin M. ; Parker, Aimee ; Baldwin, Lydia R. ; Greenman, John ; Carding, Simon R. ; Funnell, Simon G. P.</creatorcontrib><description>The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut–brain axis (GBA). Our dual-flow GIT–brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT–brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/5.0200459</identifier><identifier>PMID: 39280192</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Brain ; Cell death ; Cell membranes ; Dopamine ; Epithelium ; Gastrointestinal system ; Image analysis ; Impact analysis ; Parkinson's disease ; Peripheral nervous system ; Toxicity ; Toxins</subject><ispartof>Biomicrofluidics, 2024-09, Vol.18 (5), p.054105</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3</cites><orcidid>0000-0002-6003-6051 ; 0000-0002-3040-1353 ; 0009-0006-4047-9775 ; 0000-0002-4254-2751 ; 0000-0003-1765-9656 ; 0000-0002-2383-9701 ; 0000-0002-7152-1167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39280192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Emily J.</creatorcontrib><creatorcontrib>Skinner, Benjamin M.</creatorcontrib><creatorcontrib>Parker, Aimee</creatorcontrib><creatorcontrib>Baldwin, Lydia R.</creatorcontrib><creatorcontrib>Greenman, John</creatorcontrib><creatorcontrib>Carding, Simon R.</creatorcontrib><creatorcontrib>Funnell, Simon G. P.</creatorcontrib><title>An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut–brain axis (GBA). Our dual-flow GIT–brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT–brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.</description><subject>Brain</subject><subject>Cell death</subject><subject>Cell membranes</subject><subject>Dopamine</subject><subject>Epithelium</subject><subject>Gastrointestinal system</subject><subject>Image analysis</subject><subject>Impact analysis</subject><subject>Parkinson's disease</subject><subject>Peripheral nervous system</subject><subject>Toxicity</subject><subject>Toxins</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90ctKxDAUBuAgijNeFr6ABNyoUM2lSZvlIN5AUVDXJU3TmQxtMiapOG9vdEYRF65yFl9-Dv8B4ACjM4w4PWdniCCUM7EBxlhQkmHEys1f8wjshDBHiOGCkG0wooKUCAsyBnFiobHwzUTvYD900WTOT6WFvVHeLWbLYFznpkbJDoZliLqHx_ePTycwuvTvTYdopjJqGGcaToeYRZfVXqbE6KUNnVMyGmeha6HVg3fRvRsb9sBWK7ug99fvLni5uny-uMnuHq5vLyZ3mSK0jFmp2rJQQmPZtA2VqslrSnJe5zQXQrWM8qZQhBNWa0SkqNOsOOUFlQUXhEu6C45XuQvvXoe0a9WboHTXSavdECqauskFpaxM9OgPnbvB27Tdp8oxL6lgSZ2sVOomBK_bauFNL_2ywqj6PEXFqvUpkj1cJw51r5sf-d19AqcrEJSJXzX9k_YBrCaRZA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Jones, Emily J.</creator><creator>Skinner, Benjamin M.</creator><creator>Parker, Aimee</creator><creator>Baldwin, Lydia R.</creator><creator>Greenman, John</creator><creator>Carding, Simon R.</creator><creator>Funnell, Simon G. P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6003-6051</orcidid><orcidid>https://orcid.org/0000-0002-3040-1353</orcidid><orcidid>https://orcid.org/0009-0006-4047-9775</orcidid><orcidid>https://orcid.org/0000-0002-4254-2751</orcidid><orcidid>https://orcid.org/0000-0003-1765-9656</orcidid><orcidid>https://orcid.org/0000-0002-2383-9701</orcidid><orcidid>https://orcid.org/0000-0002-7152-1167</orcidid></search><sort><creationdate>202409</creationdate><title>An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins</title><author>Jones, Emily J. ; Skinner, Benjamin M. ; Parker, Aimee ; Baldwin, Lydia R. ; Greenman, John ; Carding, Simon R. ; Funnell, Simon G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Cell death</topic><topic>Cell membranes</topic><topic>Dopamine</topic><topic>Epithelium</topic><topic>Gastrointestinal system</topic><topic>Image analysis</topic><topic>Impact analysis</topic><topic>Parkinson's disease</topic><topic>Peripheral nervous system</topic><topic>Toxicity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Emily J.</creatorcontrib><creatorcontrib>Skinner, Benjamin M.</creatorcontrib><creatorcontrib>Parker, Aimee</creatorcontrib><creatorcontrib>Baldwin, Lydia R.</creatorcontrib><creatorcontrib>Greenman, John</creatorcontrib><creatorcontrib>Carding, Simon R.</creatorcontrib><creatorcontrib>Funnell, Simon G. P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Emily J.</au><au>Skinner, Benjamin M.</au><au>Parker, Aimee</au><au>Baldwin, Lydia R.</au><au>Greenman, John</au><au>Carding, Simon R.</au><au>Funnell, Simon G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2024-09</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>054105</spage><pages>054105-</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut–brain axis (GBA). Our dual-flow GIT–brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT–brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39280192</pmid><doi>10.1063/5.0200459</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6003-6051</orcidid><orcidid>https://orcid.org/0000-0002-3040-1353</orcidid><orcidid>https://orcid.org/0009-0006-4047-9775</orcidid><orcidid>https://orcid.org/0000-0002-4254-2751</orcidid><orcidid>https://orcid.org/0000-0003-1765-9656</orcidid><orcidid>https://orcid.org/0000-0002-2383-9701</orcidid><orcidid>https://orcid.org/0000-0002-7152-1167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-1058 |
ispartof | Biomicrofluidics, 2024-09, Vol.18 (5), p.054105 |
issn | 1932-1058 1932-1058 |
language | eng |
recordid | cdi_proquest_journals_3104168395 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Brain Cell death Cell membranes Dopamine Epithelium Gastrointestinal system Image analysis Impact analysis Parkinson's disease Peripheral nervous system Toxicity Toxins |
title | An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in%20vitro%20multi-organ%20microphysiological%20system%20(MPS)%20to%20investigate%20the%20gut-to-brain%20translocation%20of%20neurotoxins&rft.jtitle=Biomicrofluidics&rft.au=Jones,%20Emily%20J.&rft.date=2024-09&rft.volume=18&rft.issue=5&rft.spage=054105&rft.pages=054105-&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/5.0200459&rft_dat=%3Cproquest_scita%3E3104168395%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-8cf87c9e1adfd3acd4b3246b43499cf536d7c2625be02a9bc26c63673a76926a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104168395&rft_id=info:pmid/39280192&rfr_iscdi=true |