Loading…

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae

We present an integral-based technique (IBT) algorithm to accelerate supernova (SN) radiative transfer calculations. The algorithm utilizes ``integral packets'', which are calculated by the path integral of the Monte-Carlo energy packets, to synthesize the observed spectropolarimetric sign...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Chen, Xingzhuo, Wang, Lifan, Kasen, Daniel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Xingzhuo
Wang, Lifan
Kasen, Daniel
description We present an integral-based technique (IBT) algorithm to accelerate supernova (SN) radiative transfer calculations. The algorithm utilizes ``integral packets'', which are calculated by the path integral of the Monte-Carlo energy packets, to synthesize the observed spectropolarimetric signal at a given viewing direction in a 3-D time-dependent radiative transfer program. Compared to the event-based technique (EBT) proposed by (Bulla et al. 2015), our algorithm significantly reduces the computation time and increases the Monte-Carlo signal-to-noise ratio. Using a 1-D spherical symmetric type Ia supernova (SN Ia) ejecta model DDC10 and its derived 3-D model, the IBT algorithm has successfully passed the verification of: (1) spherical symmetry; (2) mirror symmetry; (3) cross comparison on a 3-D SN model with direct-counting technique (DCT) and EBT. Notably, with our algorithm implemented in the 3-D Monte-Carlo radiative transfer code SEDONA, the computation time is faster than EBT by a factor of \(10-30\), and the signal-to-noise (S/N) ratio is better by a factor of \(5-10\), with the same number of Monte-Carlo quanta.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3104283520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104283520</sourcerecordid><originalsourceid>FETCH-proquest_journals_31042835203</originalsourceid><addsrcrecordid>eNqNjbEKwkAQRA9BUDT_sGCjReC8S9RWg6KFjaaXJW5MJN7GvYvfbwo_wGpg3jxmoMbG2mW8SYwZqcj7p9barNYmTe1YvbYOTi7QQ7CJd-jpDjkVlavfHcH8tMsXEBi2RUENCQaCUBGcuTfiDKVhuOC9xlB_CHJB50sSyPjVdqEv2UHJAteuJXH8QZqqYYmNp-iXEzU77PPsGLfC_aEPtyd34np0s0udmI1Njbb_rb7_ukh_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104283520</pqid></control><display><type>article</type><title>An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae</title><source>Publicly Available Content Database</source><creator>Chen, Xingzhuo ; Wang, Lifan ; Kasen, Daniel</creator><creatorcontrib>Chen, Xingzhuo ; Wang, Lifan ; Kasen, Daniel</creatorcontrib><description>We present an integral-based technique (IBT) algorithm to accelerate supernova (SN) radiative transfer calculations. The algorithm utilizes ``integral packets'', which are calculated by the path integral of the Monte-Carlo energy packets, to synthesize the observed spectropolarimetric signal at a given viewing direction in a 3-D time-dependent radiative transfer program. Compared to the event-based technique (EBT) proposed by (Bulla et al. 2015), our algorithm significantly reduces the computation time and increases the Monte-Carlo signal-to-noise ratio. Using a 1-D spherical symmetric type Ia supernova (SN Ia) ejecta model DDC10 and its derived 3-D model, the IBT algorithm has successfully passed the verification of: (1) spherical symmetry; (2) mirror symmetry; (3) cross comparison on a 3-D SN model with direct-counting technique (DCT) and EBT. Notably, with our algorithm implemented in the 3-D Monte-Carlo radiative transfer code SEDONA, the computation time is faster than EBT by a factor of \(10-30\), and the signal-to-noise (S/N) ratio is better by a factor of \(5-10\), with the same number of Monte-Carlo quanta.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation ; Ejecta ; Monte Carlo simulation ; Radiative transfer ; Signal to noise ratio ; Supernovae ; Symmetry ; Time dependence</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3104283520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chen, Xingzhuo</creatorcontrib><creatorcontrib>Wang, Lifan</creatorcontrib><creatorcontrib>Kasen, Daniel</creatorcontrib><title>An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae</title><title>arXiv.org</title><description>We present an integral-based technique (IBT) algorithm to accelerate supernova (SN) radiative transfer calculations. The algorithm utilizes ``integral packets'', which are calculated by the path integral of the Monte-Carlo energy packets, to synthesize the observed spectropolarimetric signal at a given viewing direction in a 3-D time-dependent radiative transfer program. Compared to the event-based technique (EBT) proposed by (Bulla et al. 2015), our algorithm significantly reduces the computation time and increases the Monte-Carlo signal-to-noise ratio. Using a 1-D spherical symmetric type Ia supernova (SN Ia) ejecta model DDC10 and its derived 3-D model, the IBT algorithm has successfully passed the verification of: (1) spherical symmetry; (2) mirror symmetry; (3) cross comparison on a 3-D SN model with direct-counting technique (DCT) and EBT. Notably, with our algorithm implemented in the 3-D Monte-Carlo radiative transfer code SEDONA, the computation time is faster than EBT by a factor of \(10-30\), and the signal-to-noise (S/N) ratio is better by a factor of \(5-10\), with the same number of Monte-Carlo quanta.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Ejecta</subject><subject>Monte Carlo simulation</subject><subject>Radiative transfer</subject><subject>Signal to noise ratio</subject><subject>Supernovae</subject><subject>Symmetry</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjbEKwkAQRA9BUDT_sGCjReC8S9RWg6KFjaaXJW5MJN7GvYvfbwo_wGpg3jxmoMbG2mW8SYwZqcj7p9barNYmTe1YvbYOTi7QQ7CJd-jpDjkVlavfHcH8tMsXEBi2RUENCQaCUBGcuTfiDKVhuOC9xlB_CHJB50sSyPjVdqEv2UHJAteuJXH8QZqqYYmNp-iXEzU77PPsGLfC_aEPtyd34np0s0udmI1Njbb_rb7_ukh_</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Chen, Xingzhuo</creator><creator>Wang, Lifan</creator><creator>Kasen, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240912</creationdate><title>An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae</title><author>Chen, Xingzhuo ; Wang, Lifan ; Kasen, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31042835203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Ejecta</topic><topic>Monte Carlo simulation</topic><topic>Radiative transfer</topic><topic>Signal to noise ratio</topic><topic>Supernovae</topic><topic>Symmetry</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xingzhuo</creatorcontrib><creatorcontrib>Wang, Lifan</creatorcontrib><creatorcontrib>Kasen, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xingzhuo</au><au>Wang, Lifan</au><au>Kasen, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae</atitle><jtitle>arXiv.org</jtitle><date>2024-09-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present an integral-based technique (IBT) algorithm to accelerate supernova (SN) radiative transfer calculations. The algorithm utilizes ``integral packets'', which are calculated by the path integral of the Monte-Carlo energy packets, to synthesize the observed spectropolarimetric signal at a given viewing direction in a 3-D time-dependent radiative transfer program. Compared to the event-based technique (EBT) proposed by (Bulla et al. 2015), our algorithm significantly reduces the computation time and increases the Monte-Carlo signal-to-noise ratio. Using a 1-D spherical symmetric type Ia supernova (SN Ia) ejecta model DDC10 and its derived 3-D model, the IBT algorithm has successfully passed the verification of: (1) spherical symmetry; (2) mirror symmetry; (3) cross comparison on a 3-D SN model with direct-counting technique (DCT) and EBT. Notably, with our algorithm implemented in the 3-D Monte-Carlo radiative transfer code SEDONA, the computation time is faster than EBT by a factor of \(10-30\), and the signal-to-noise (S/N) ratio is better by a factor of \(5-10\), with the same number of Monte-Carlo quanta.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3104283520
source Publicly Available Content Database
subjects Algorithms
Computation
Ejecta
Monte Carlo simulation
Radiative transfer
Signal to noise ratio
Supernovae
Symmetry
Time dependence
title An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Integral-Based%20Technique%20(IBT)%20to%20Accelerate%20the%20Monte-Carlo%20Radiative%20Transfer%20Computation%20for%20Supernovae&rft.jtitle=arXiv.org&rft.au=Chen,%20Xingzhuo&rft.date=2024-09-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3104283520%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31042835203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104283520&rft_id=info:pmid/&rfr_iscdi=true