Loading…

Rock avalanches in northeastern Baffin Island, Canada: understanding low occurrence amid high hazard potential

Rock avalanches in fjord environments can cause direct catastrophic damage and trigger secondary submarine landslides and tsunamis. These are well-documented in Greenland, Norway, and Alaska but have gone largely unreported in the extensive fjord terrain of the eastern Canadian Arctic. We provide th...

Full description

Saved in:
Bibliographic Details
Published in:Landslides 2024-10, Vol.21 (10), p.2307-2326
Main Authors: Matthew, Maureen C., Gosse, John C., Hermanns, Reginald L., Normandeau, Alexandre, Tremblay, Tommy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rock avalanches in fjord environments can cause direct catastrophic damage and trigger secondary submarine landslides and tsunamis. These are well-documented in Greenland, Norway, and Alaska but have gone largely unreported in the extensive fjord terrain of the eastern Canadian Arctic. We provide the first inventory of rock avalanche deposits in northeastern Baffin Island—a region characterized by moderate to high seismic hazard, steep and high-walled fjords and glacial valleys, active deglaciation, and observed climate warming. Over a broad study area of ~60,000 km 2 , one sixth of the terrain had sufficient slope height and gradient to potentially generate rock avalanches. Within that hazard zone, we identified eight rock avalanche deposits at six locations. Only three rock avalanche deposits at two locations are dated, using aerial imagery (1958-present), to the last century while five deposits at four locations are inferred as syn- to post-glacial, likely occurring shortly after local debuttressing. These total numbers fall well below documented inventories from Greenland, Norway, and Alaska. We hypothesize that (1) continuous permafrost persists throughout this region and continues to act as a stabilizing factor and (2) rock mass quality is high in areas of most extreme relief contrast within the study region relative to analogous high-latitude fjord systems such as those in southwestern Greenland. We suggest that Baffin Island is currently in a period of quasi-stability that follows the intense instability during initial deglaciation, yet precedes the higher anticipated slope instability that may occur during permafrost degradation.
ISSN:1612-510X
1612-5118
DOI:10.1007/s10346-024-02315-8