Loading…
Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells
In this study, we investigate an optimized design of ZnO/BaZrS 3 /BaZr 1−0.95 Ti 0.05 S 3 chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombinati...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2024-10, Vol.130 (10), Article 731 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 130 |
creator | Alatawi, Naifa S. Almutairi, Abeer M. Khalil, Sana Ahmed Alatawi, Asma Obaidallah Al-Anazi, Wejdan Magherbi, Mourad Alimi, Souheil |
description | In this study, we investigate an optimized design of ZnO/BaZrS
3
/BaZr
1−0.95
Ti
0.05
S
3
chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombination. The influence of thickness and doping of both window and absorber layers, as well as the absorber band gap, was investigated using the proposed model. The model was validated through numerical simulations, showing a good agreement. The proposed model is utilized as the fitness criterion within the MOPSO framework to optimize the solar cell performance. The optimized design achieved an efficiency of 12.26%, outperforming the conventional design with an efficiency of 8.66%. This significant improvement underscores the effectiveness of tuning band alignment at the interface and also to the global design optimization strategy in enhancing the performance of chalcogenide perovskite solar cells. |
doi_str_mv | 10.1007/s00339-024-07871-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104806873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104806873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi1UJLbAH-BkqefQ8ccm9rFFlFZC6qHbCxfLsSe7XhJ7awcE_HpMU4lb5zKj0fPOSA8hFwwuGUD3uQAIoRvgsoFOdawRR2TFpOANtAI-kBVo2TVK6PaEfCxlD7Uk5yvytNlhyjgHZ0caYgnb3VzqMCea0aWpD9HOIUU6odvZGMpUqI2eeqxopOkwhym8LEga6Fd7l38JWtHRpS3G4JEeMKfHch9mpCWNNlOH41jOyPFgx4Ln__op-f3tenP1vbn9efPj6stt4zjA3PRSejVwtrZWe96uO62skh6Z526tmObarjUiaKc9DN7Jvu-6vldM9q2vO3FKPi13Dzn9ecAym316yLG-NIKBVNCqTlSKL5TLqZSMgznkMNn8bBiYN8NmMWyqYfPXsHkLiSVUKhy3mN9P_yf1CvkcgWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104806873</pqid></control><display><type>article</type><title>Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells</title><source>Springer Nature</source><creator>Alatawi, Naifa S. ; Almutairi, Abeer M. ; Khalil, Sana Ahmed ; Alatawi, Asma Obaidallah ; Al-Anazi, Wejdan ; Magherbi, Mourad ; Alimi, Souheil</creator><creatorcontrib>Alatawi, Naifa S. ; Almutairi, Abeer M. ; Khalil, Sana Ahmed ; Alatawi, Asma Obaidallah ; Al-Anazi, Wejdan ; Magherbi, Mourad ; Alimi, Souheil</creatorcontrib><description>In this study, we investigate an optimized design of ZnO/BaZrS
3
/BaZr
1−0.95
Ti
0.05
S
3
chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombination. The influence of thickness and doping of both window and absorber layers, as well as the absorber band gap, was investigated using the proposed model. The model was validated through numerical simulations, showing a good agreement. The proposed model is utilized as the fitness criterion within the MOPSO framework to optimize the solar cell performance. The optimized design achieved an efficiency of 12.26%, outperforming the conventional design with an efficiency of 8.66%. This significant improvement underscores the effectiveness of tuning band alignment at the interface and also to the global design optimization strategy in enhancing the performance of chalcogenide perovskite solar cells.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07871-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorbers ; Chalcogenides ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Design optimization ; Machines ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Perovskites ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Processes ; Solar cells ; Surfaces and Interfaces ; Thickness ; Thin Films ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science & processing, 2024-10, Vol.130 (10), Article 731</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alatawi, Naifa S.</creatorcontrib><creatorcontrib>Almutairi, Abeer M.</creatorcontrib><creatorcontrib>Khalil, Sana Ahmed</creatorcontrib><creatorcontrib>Alatawi, Asma Obaidallah</creatorcontrib><creatorcontrib>Al-Anazi, Wejdan</creatorcontrib><creatorcontrib>Magherbi, Mourad</creatorcontrib><creatorcontrib>Alimi, Souheil</creatorcontrib><title>Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>In this study, we investigate an optimized design of ZnO/BaZrS
3
/BaZr
1−0.95
Ti
0.05
S
3
chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombination. The influence of thickness and doping of both window and absorber layers, as well as the absorber band gap, was investigated using the proposed model. The model was validated through numerical simulations, showing a good agreement. The proposed model is utilized as the fitness criterion within the MOPSO framework to optimize the solar cell performance. The optimized design achieved an efficiency of 12.26%, outperforming the conventional design with an efficiency of 8.66%. This significant improvement underscores the effectiveness of tuning band alignment at the interface and also to the global design optimization strategy in enhancing the performance of chalcogenide perovskite solar cells.</description><subject>Absorbers</subject><subject>Chalcogenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Design optimization</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Solar cells</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhi1UJLbAH-BkqefQ8ccm9rFFlFZC6qHbCxfLsSe7XhJ7awcE_HpMU4lb5zKj0fPOSA8hFwwuGUD3uQAIoRvgsoFOdawRR2TFpOANtAI-kBVo2TVK6PaEfCxlD7Uk5yvytNlhyjgHZ0caYgnb3VzqMCea0aWpD9HOIUU6odvZGMpUqI2eeqxopOkwhym8LEga6Fd7l38JWtHRpS3G4JEeMKfHch9mpCWNNlOH41jOyPFgx4Ln__op-f3tenP1vbn9efPj6stt4zjA3PRSejVwtrZWe96uO62skh6Z526tmObarjUiaKc9DN7Jvu-6vldM9q2vO3FKPi13Dzn9ecAym316yLG-NIKBVNCqTlSKL5TLqZSMgznkMNn8bBiYN8NmMWyqYfPXsHkLiSVUKhy3mN9P_yf1CvkcgWs</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Alatawi, Naifa S.</creator><creator>Almutairi, Abeer M.</creator><creator>Khalil, Sana Ahmed</creator><creator>Alatawi, Asma Obaidallah</creator><creator>Al-Anazi, Wejdan</creator><creator>Magherbi, Mourad</creator><creator>Alimi, Souheil</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells</title><author>Alatawi, Naifa S. ; Almutairi, Abeer M. ; Khalil, Sana Ahmed ; Alatawi, Asma Obaidallah ; Al-Anazi, Wejdan ; Magherbi, Mourad ; Alimi, Souheil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Chalcogenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Design optimization</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Solar cells</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alatawi, Naifa S.</creatorcontrib><creatorcontrib>Almutairi, Abeer M.</creatorcontrib><creatorcontrib>Khalil, Sana Ahmed</creatorcontrib><creatorcontrib>Alatawi, Asma Obaidallah</creatorcontrib><creatorcontrib>Al-Anazi, Wejdan</creatorcontrib><creatorcontrib>Magherbi, Mourad</creatorcontrib><creatorcontrib>Alimi, Souheil</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alatawi, Naifa S.</au><au>Almutairi, Abeer M.</au><au>Khalil, Sana Ahmed</au><au>Alatawi, Asma Obaidallah</au><au>Al-Anazi, Wejdan</au><au>Magherbi, Mourad</au><au>Alimi, Souheil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>130</volume><issue>10</issue><artnum>731</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this study, we investigate an optimized design of ZnO/BaZrS
3
/BaZr
1−0.95
Ti
0.05
S
3
chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombination. The influence of thickness and doping of both window and absorber layers, as well as the absorber band gap, was investigated using the proposed model. The model was validated through numerical simulations, showing a good agreement. The proposed model is utilized as the fitness criterion within the MOPSO framework to optimize the solar cell performance. The optimized design achieved an efficiency of 12.26%, outperforming the conventional design with an efficiency of 8.66%. This significant improvement underscores the effectiveness of tuning band alignment at the interface and also to the global design optimization strategy in enhancing the performance of chalcogenide perovskite solar cells.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07871-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2024-10, Vol.130 (10), Article 731 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_3104806873 |
source | Springer Nature |
subjects | Absorbers Chalcogenides Characterization and Evaluation of Materials Condensed Matter Physics Design optimization Machines Manufacturing Nanotechnology Optical and Electronic Materials Perovskites Photovoltaic cells Physics Physics and Astronomy Processes Solar cells Surfaces and Interfaces Thickness Thin Films Zinc oxide |
title | Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20insights%20into%20recombination%20mechanisms%20and%20design%20optimization%20of%20BaZrS3%20chalcogenide%20perovskite%20solar%20cells&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Alatawi,%20Naifa%20S.&rft.date=2024-10-01&rft.volume=130&rft.issue=10&rft.artnum=731&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07871-3&rft_dat=%3Cproquest_cross%3E3104806873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104806873&rft_id=info:pmid/&rfr_iscdi=true |