Loading…

Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells

In this study, we investigate an optimized design of ZnO/BaZrS 3 /BaZr 1−0.95 Ti 0.05 S 3 chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombinati...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2024-10, Vol.130 (10), Article 731
Main Authors: Alatawi, Naifa S., Almutairi, Abeer M., Khalil, Sana Ahmed, Alatawi, Asma Obaidallah, Al-Anazi, Wejdan, Magherbi, Mourad, Alimi, Souheil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3
container_end_page
container_issue 10
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 130
creator Alatawi, Naifa S.
Almutairi, Abeer M.
Khalil, Sana Ahmed
Alatawi, Asma Obaidallah
Al-Anazi, Wejdan
Magherbi, Mourad
Alimi, Souheil
description In this study, we investigate an optimized design of ZnO/BaZrS 3 /BaZr 1−0.95 Ti 0.05 S 3 chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombination. The influence of thickness and doping of both window and absorber layers, as well as the absorber band gap, was investigated using the proposed model. The model was validated through numerical simulations, showing a good agreement. The proposed model is utilized as the fitness criterion within the MOPSO framework to optimize the solar cell performance. The optimized design achieved an efficiency of 12.26%, outperforming the conventional design with an efficiency of 8.66%. This significant improvement underscores the effectiveness of tuning band alignment at the interface and also to the global design optimization strategy in enhancing the performance of chalcogenide perovskite solar cells.
doi_str_mv 10.1007/s00339-024-07871-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104806873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104806873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi1UJLbAH-BkqefQ8ccm9rFFlFZC6qHbCxfLsSe7XhJ7awcE_HpMU4lb5zKj0fPOSA8hFwwuGUD3uQAIoRvgsoFOdawRR2TFpOANtAI-kBVo2TVK6PaEfCxlD7Uk5yvytNlhyjgHZ0caYgnb3VzqMCea0aWpD9HOIUU6odvZGMpUqI2eeqxopOkwhym8LEga6Fd7l38JWtHRpS3G4JEeMKfHch9mpCWNNlOH41jOyPFgx4Ln__op-f3tenP1vbn9efPj6stt4zjA3PRSejVwtrZWe96uO62skh6Z526tmObarjUiaKc9DN7Jvu-6vldM9q2vO3FKPi13Dzn9ecAym316yLG-NIKBVNCqTlSKL5TLqZSMgznkMNn8bBiYN8NmMWyqYfPXsHkLiSVUKhy3mN9P_yf1CvkcgWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104806873</pqid></control><display><type>article</type><title>Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells</title><source>Springer Nature</source><creator>Alatawi, Naifa S. ; Almutairi, Abeer M. ; Khalil, Sana Ahmed ; Alatawi, Asma Obaidallah ; Al-Anazi, Wejdan ; Magherbi, Mourad ; Alimi, Souheil</creator><creatorcontrib>Alatawi, Naifa S. ; Almutairi, Abeer M. ; Khalil, Sana Ahmed ; Alatawi, Asma Obaidallah ; Al-Anazi, Wejdan ; Magherbi, Mourad ; Alimi, Souheil</creatorcontrib><description>In this study, we investigate an optimized design of ZnO/BaZrS 3 /BaZr 1−0.95 Ti 0.05 S 3 chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombination. The influence of thickness and doping of both window and absorber layers, as well as the absorber band gap, was investigated using the proposed model. The model was validated through numerical simulations, showing a good agreement. The proposed model is utilized as the fitness criterion within the MOPSO framework to optimize the solar cell performance. The optimized design achieved an efficiency of 12.26%, outperforming the conventional design with an efficiency of 8.66%. This significant improvement underscores the effectiveness of tuning band alignment at the interface and also to the global design optimization strategy in enhancing the performance of chalcogenide perovskite solar cells.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07871-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorbers ; Chalcogenides ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Design optimization ; Machines ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Perovskites ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Processes ; Solar cells ; Surfaces and Interfaces ; Thickness ; Thin Films ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2024-10, Vol.130 (10), Article 731</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alatawi, Naifa S.</creatorcontrib><creatorcontrib>Almutairi, Abeer M.</creatorcontrib><creatorcontrib>Khalil, Sana Ahmed</creatorcontrib><creatorcontrib>Alatawi, Asma Obaidallah</creatorcontrib><creatorcontrib>Al-Anazi, Wejdan</creatorcontrib><creatorcontrib>Magherbi, Mourad</creatorcontrib><creatorcontrib>Alimi, Souheil</creatorcontrib><title>Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this study, we investigate an optimized design of ZnO/BaZrS 3 /BaZr 1−0.95 Ti 0.05 S 3 chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombination. The influence of thickness and doping of both window and absorber layers, as well as the absorber band gap, was investigated using the proposed model. The model was validated through numerical simulations, showing a good agreement. The proposed model is utilized as the fitness criterion within the MOPSO framework to optimize the solar cell performance. The optimized design achieved an efficiency of 12.26%, outperforming the conventional design with an efficiency of 8.66%. This significant improvement underscores the effectiveness of tuning band alignment at the interface and also to the global design optimization strategy in enhancing the performance of chalcogenide perovskite solar cells.</description><subject>Absorbers</subject><subject>Chalcogenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Design optimization</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Solar cells</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhi1UJLbAH-BkqefQ8ccm9rFFlFZC6qHbCxfLsSe7XhJ7awcE_HpMU4lb5zKj0fPOSA8hFwwuGUD3uQAIoRvgsoFOdawRR2TFpOANtAI-kBVo2TVK6PaEfCxlD7Uk5yvytNlhyjgHZ0caYgnb3VzqMCea0aWpD9HOIUU6odvZGMpUqI2eeqxopOkwhym8LEga6Fd7l38JWtHRpS3G4JEeMKfHch9mpCWNNlOH41jOyPFgx4Ln__op-f3tenP1vbn9efPj6stt4zjA3PRSejVwtrZWe96uO62skh6Z526tmObarjUiaKc9DN7Jvu-6vldM9q2vO3FKPi13Dzn9ecAym316yLG-NIKBVNCqTlSKL5TLqZSMgznkMNn8bBiYN8NmMWyqYfPXsHkLiSVUKhy3mN9P_yf1CvkcgWs</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Alatawi, Naifa S.</creator><creator>Almutairi, Abeer M.</creator><creator>Khalil, Sana Ahmed</creator><creator>Alatawi, Asma Obaidallah</creator><creator>Al-Anazi, Wejdan</creator><creator>Magherbi, Mourad</creator><creator>Alimi, Souheil</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells</title><author>Alatawi, Naifa S. ; Almutairi, Abeer M. ; Khalil, Sana Ahmed ; Alatawi, Asma Obaidallah ; Al-Anazi, Wejdan ; Magherbi, Mourad ; Alimi, Souheil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Chalcogenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Design optimization</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Solar cells</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alatawi, Naifa S.</creatorcontrib><creatorcontrib>Almutairi, Abeer M.</creatorcontrib><creatorcontrib>Khalil, Sana Ahmed</creatorcontrib><creatorcontrib>Alatawi, Asma Obaidallah</creatorcontrib><creatorcontrib>Al-Anazi, Wejdan</creatorcontrib><creatorcontrib>Magherbi, Mourad</creatorcontrib><creatorcontrib>Alimi, Souheil</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alatawi, Naifa S.</au><au>Almutairi, Abeer M.</au><au>Khalil, Sana Ahmed</au><au>Alatawi, Asma Obaidallah</au><au>Al-Anazi, Wejdan</au><au>Magherbi, Mourad</au><au>Alimi, Souheil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>130</volume><issue>10</issue><artnum>731</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this study, we investigate an optimized design of ZnO/BaZrS 3 /BaZr 1−0.95 Ti 0.05 S 3 chalcogenide perovskites solar cells using a theoretical model that considers different recombination mechanisms effect in terms of bulk recombination, interface recombination and tunneling enhanced recombination. The influence of thickness and doping of both window and absorber layers, as well as the absorber band gap, was investigated using the proposed model. The model was validated through numerical simulations, showing a good agreement. The proposed model is utilized as the fitness criterion within the MOPSO framework to optimize the solar cell performance. The optimized design achieved an efficiency of 12.26%, outperforming the conventional design with an efficiency of 8.66%. This significant improvement underscores the effectiveness of tuning band alignment at the interface and also to the global design optimization strategy in enhancing the performance of chalcogenide perovskite solar cells.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07871-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2024-10, Vol.130 (10), Article 731
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_3104806873
source Springer Nature
subjects Absorbers
Chalcogenides
Characterization and Evaluation of Materials
Condensed Matter Physics
Design optimization
Machines
Manufacturing
Nanotechnology
Optical and Electronic Materials
Perovskites
Photovoltaic cells
Physics
Physics and Astronomy
Processes
Solar cells
Surfaces and Interfaces
Thickness
Thin Films
Zinc oxide
title Theoretical insights into recombination mechanisms and design optimization of BaZrS3 chalcogenide perovskite solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20insights%20into%20recombination%20mechanisms%20and%20design%20optimization%20of%20BaZrS3%20chalcogenide%20perovskite%20solar%20cells&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Alatawi,%20Naifa%20S.&rft.date=2024-10-01&rft.volume=130&rft.issue=10&rft.artnum=731&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07871-3&rft_dat=%3Cproquest_cross%3E3104806873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-b44d8f215aa9d265798a84de1d2c581929a59ee09c9d0fdc4bb77bb814b6dc9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104806873&rft_id=info:pmid/&rfr_iscdi=true