Loading…
Investigating Static Deflection of Non-Prismatic Axially Functionally Graded Beam
In this study, the static deflection of non-prismatic axial function graded tapered beam (A-FGB) under distribution load has been analyzed using ANSYS workbench (17.2). According to a power-law model, the elastic modulus of the beam varies continuously in the axial direction of the beam. Also, the b...
Saved in:
Published in: | Material design & processing communications 2022-07, Vol.2022, p.1-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the static deflection of non-prismatic axial function graded tapered beam (A-FGB) under distribution load has been analyzed using ANSYS workbench (17.2). According to a power-law model, the elastic modulus of the beam varies continuously in the axial direction of the beam. Also, the beam’s geometry, i.e., width, thickness, or both width and thickness of the beam, varies linearly in the axial direction with different values of non-uniformity parameter (1, 0.5,0, −0.5, and −0.75). The effects of martial distribution, i.e., power-law index, and non-uniformity parameter on the static deflection for A-FGB with different boundary conditions, in such free-clamped, clamped-free, and simply-supported, are studied. This research deals with functionally graded materials FGMs in more than one aspect in terms of using different boundary conditions; in addition, it studies the response of the non-prismatic beam non-uniformity parameter (α); therefore, this research studies comprehensively the deflection of the beam. The results show that the increase in power-law index causes decreasing in dimensionless deflection and its rate of change depends on the supporting types of the beam and non-uniformity parameters. The variation in both width and thickness for a free-clamped axial function–graded beam gives a significant decrease in dimensionless deflection at decreasing in non-uniformity parameter, whereas the variation in thickness for clamped-free axial function graded beam gives a significant decrease in dimensionless deflection at decreasing of non-uniformity parameter. |
---|---|
ISSN: | 2577-6576 2577-6576 |
DOI: | 10.1155/2022/7436024 |