Loading…
Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles
A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route a...
Saved in:
Published in: | IEEE transactions on transportation electrification 2024-09, Vol.10 (3), p.7358-7373 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63 |
container_end_page | 7373 |
container_issue | 3 |
container_start_page | 7358 |
container_title | IEEE transactions on transportation electrification |
container_volume | 10 |
creator | Shen, Feifan Lin, Siyao Wei, Juan Huang, Sheng Wu, Qiuwei Shen, Yangwu Zhu, Lipeng Wang, Pengda Wang, Bozhong |
description | A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route as well as the charging and discharging (C&D) behavior of EVs in the transportation network (TN). Second, a distributed congestion management framework based on the asynchronous distributed alternating direction method of multipliers (AD-ADMM) was introduced. Using the proposed framework, DDTs were iteratively optimized between the distribution system operator (DSO) and aggregators to achieve optimal EV routing in the TN and congestion management in the distribution network. Finally, case studies were conducted on two test systems, and the numerical results showed that the proposed DDT method can optimize the temporal-spatial distribution of EVs in the TN, minimize the travel time and C&D costs of EVs in each aggregator, and effectively avoid congestion in the distribution network. Moreover, the optimization efficiency and privacy information protection of aggregators in the DT-based congestion management method could be improved. |
doi_str_mv | 10.1109/TTE.2023.3332892 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106512787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318166</ieee_id><sourcerecordid>3106512787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhCMEElXpnQMHS5xT_MjDOaK2PKQCBwLXyInXxSWxi50K9T_wo3FohXrakXZmVvtF0SXBU0JwcVOWiynFlE0ZY5QX9CQa0aDiPOf09EifRxPv1xhjkrK0INko-plr3ztdb3uQaL4zotMNKoXTSiFlHZpZswLfa2vQkzBiBR2YHmmD_nPD6hn6b-s-_WD3WoLTZoVK6DbWiTZ-3YheizYsrZPaiL-IVWjRQhM6GvQOH7ppwV9EZ0q0HiaHOY7e7hbl7CFevtw_zm6XcUOTtI9lnVHFMQcpmRKCKgm8yQUrijRPCWBZpEnGG8IocIETUeAURC1rTpJEcsjYOLre926c_dqG96q13ToTTlaM4CwlNOd5cOG9q3HWeweq2jjdCberCK4G7FXAXg3YqwP2ELnaRzQAHNkZ4STL2C8u8YFp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106512787</pqid></control><display><type>article</type><title>Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shen, Feifan ; Lin, Siyao ; Wei, Juan ; Huang, Sheng ; Wu, Qiuwei ; Shen, Yangwu ; Zhu, Lipeng ; Wang, Pengda ; Wang, Bozhong</creator><creatorcontrib>Shen, Feifan ; Lin, Siyao ; Wei, Juan ; Huang, Sheng ; Wu, Qiuwei ; Shen, Yangwu ; Zhu, Lipeng ; Wang, Pengda ; Wang, Bozhong</creatorcontrib><description>A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route as well as the charging and discharging (C&D) behavior of EVs in the transportation network (TN). Second, a distributed congestion management framework based on the asynchronous distributed alternating direction method of multipliers (AD-ADMM) was introduced. Using the proposed framework, DDTs were iteratively optimized between the distribution system operator (DSO) and aggregators to achieve optimal EV routing in the TN and congestion management in the distribution network. Finally, case studies were conducted on two test systems, and the numerical results showed that the proposed DDT method can optimize the temporal-spatial distribution of EVs in the TN, minimize the travel time and C&D costs of EVs in each aggregator, and effectively avoid congestion in the distribution network. Moreover, the optimization efficiency and privacy information protection of aggregators in the DT-based congestion management method could be improved.</description><identifier>ISSN: 2332-7782</identifier><identifier>ISSN: 2577-4212</identifier><identifier>EISSN: 2332-7782</identifier><identifier>DOI: 10.1109/TTE.2023.3332892</identifier><identifier>CODEN: ITTEBP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Congestion ; Congestion management ; Coordination ; distributed optimization ; Distribution networks ; dynamic tariff (DT) ; electric vehicle (EV) ; Electric vehicle charging ; Electric vehicles ; Indexes ; Information management ; Optimization ; Partial discharges ; Power system dynamics ; Spatial distribution ; Tariffs ; Transportation ; Transportation networks ; Travel time ; Vehicle dynamics</subject><ispartof>IEEE transactions on transportation electrification, 2024-09, Vol.10 (3), p.7358-7373</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63</cites><orcidid>0000-0003-0126-4430 ; 0000-0002-6413-3166 ; 0000-0002-9721-5782 ; 0000-0002-4573-8768 ; 0000-0001-7935-2567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Shen, Feifan</creatorcontrib><creatorcontrib>Lin, Siyao</creatorcontrib><creatorcontrib>Wei, Juan</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Wu, Qiuwei</creatorcontrib><creatorcontrib>Shen, Yangwu</creatorcontrib><creatorcontrib>Zhu, Lipeng</creatorcontrib><creatorcontrib>Wang, Pengda</creatorcontrib><creatorcontrib>Wang, Bozhong</creatorcontrib><title>Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles</title><title>IEEE transactions on transportation electrification</title><addtitle>TTE</addtitle><description>A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route as well as the charging and discharging (C&D) behavior of EVs in the transportation network (TN). Second, a distributed congestion management framework based on the asynchronous distributed alternating direction method of multipliers (AD-ADMM) was introduced. Using the proposed framework, DDTs were iteratively optimized between the distribution system operator (DSO) and aggregators to achieve optimal EV routing in the TN and congestion management in the distribution network. Finally, case studies were conducted on two test systems, and the numerical results showed that the proposed DDT method can optimize the temporal-spatial distribution of EVs in the TN, minimize the travel time and C&D costs of EVs in each aggregator, and effectively avoid congestion in the distribution network. Moreover, the optimization efficiency and privacy information protection of aggregators in the DT-based congestion management method could be improved.</description><subject>Congestion</subject><subject>Congestion management</subject><subject>Coordination</subject><subject>distributed optimization</subject><subject>Distribution networks</subject><subject>dynamic tariff (DT)</subject><subject>electric vehicle (EV)</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Indexes</subject><subject>Information management</subject><subject>Optimization</subject><subject>Partial discharges</subject><subject>Power system dynamics</subject><subject>Spatial distribution</subject><subject>Tariffs</subject><subject>Transportation</subject><subject>Transportation networks</subject><subject>Travel time</subject><subject>Vehicle dynamics</subject><issn>2332-7782</issn><issn>2577-4212</issn><issn>2332-7782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhCMEElXpnQMHS5xT_MjDOaK2PKQCBwLXyInXxSWxi50K9T_wo3FohXrakXZmVvtF0SXBU0JwcVOWiynFlE0ZY5QX9CQa0aDiPOf09EifRxPv1xhjkrK0INko-plr3ztdb3uQaL4zotMNKoXTSiFlHZpZswLfa2vQkzBiBR2YHmmD_nPD6hn6b-s-_WD3WoLTZoVK6DbWiTZ-3YheizYsrZPaiL-IVWjRQhM6GvQOH7ppwV9EZ0q0HiaHOY7e7hbl7CFevtw_zm6XcUOTtI9lnVHFMQcpmRKCKgm8yQUrijRPCWBZpEnGG8IocIETUeAURC1rTpJEcsjYOLre926c_dqG96q13ToTTlaM4CwlNOd5cOG9q3HWeweq2jjdCberCK4G7FXAXg3YqwP2ELnaRzQAHNkZ4STL2C8u8YFp</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Shen, Feifan</creator><creator>Lin, Siyao</creator><creator>Wei, Juan</creator><creator>Huang, Sheng</creator><creator>Wu, Qiuwei</creator><creator>Shen, Yangwu</creator><creator>Zhu, Lipeng</creator><creator>Wang, Pengda</creator><creator>Wang, Bozhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0126-4430</orcidid><orcidid>https://orcid.org/0000-0002-6413-3166</orcidid><orcidid>https://orcid.org/0000-0002-9721-5782</orcidid><orcidid>https://orcid.org/0000-0002-4573-8768</orcidid><orcidid>https://orcid.org/0000-0001-7935-2567</orcidid></search><sort><creationdate>20240901</creationdate><title>Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles</title><author>Shen, Feifan ; Lin, Siyao ; Wei, Juan ; Huang, Sheng ; Wu, Qiuwei ; Shen, Yangwu ; Zhu, Lipeng ; Wang, Pengda ; Wang, Bozhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Congestion</topic><topic>Congestion management</topic><topic>Coordination</topic><topic>distributed optimization</topic><topic>Distribution networks</topic><topic>dynamic tariff (DT)</topic><topic>electric vehicle (EV)</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Indexes</topic><topic>Information management</topic><topic>Optimization</topic><topic>Partial discharges</topic><topic>Power system dynamics</topic><topic>Spatial distribution</topic><topic>Tariffs</topic><topic>Transportation</topic><topic>Transportation networks</topic><topic>Travel time</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Feifan</creatorcontrib><creatorcontrib>Lin, Siyao</creatorcontrib><creatorcontrib>Wei, Juan</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Wu, Qiuwei</creatorcontrib><creatorcontrib>Shen, Yangwu</creatorcontrib><creatorcontrib>Zhu, Lipeng</creatorcontrib><creatorcontrib>Wang, Pengda</creatorcontrib><creatorcontrib>Wang, Bozhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on transportation electrification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Feifan</au><au>Lin, Siyao</au><au>Wei, Juan</au><au>Huang, Sheng</au><au>Wu, Qiuwei</au><au>Shen, Yangwu</au><au>Zhu, Lipeng</au><au>Wang, Pengda</au><au>Wang, Bozhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles</atitle><jtitle>IEEE transactions on transportation electrification</jtitle><stitle>TTE</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><spage>7358</spage><epage>7373</epage><pages>7358-7373</pages><issn>2332-7782</issn><issn>2577-4212</issn><eissn>2332-7782</eissn><coden>ITTEBP</coden><abstract>A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route as well as the charging and discharging (C&D) behavior of EVs in the transportation network (TN). Second, a distributed congestion management framework based on the asynchronous distributed alternating direction method of multipliers (AD-ADMM) was introduced. Using the proposed framework, DDTs were iteratively optimized between the distribution system operator (DSO) and aggregators to achieve optimal EV routing in the TN and congestion management in the distribution network. Finally, case studies were conducted on two test systems, and the numerical results showed that the proposed DDT method can optimize the temporal-spatial distribution of EVs in the TN, minimize the travel time and C&D costs of EVs in each aggregator, and effectively avoid congestion in the distribution network. Moreover, the optimization efficiency and privacy information protection of aggregators in the DT-based congestion management method could be improved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTE.2023.3332892</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0126-4430</orcidid><orcidid>https://orcid.org/0000-0002-6413-3166</orcidid><orcidid>https://orcid.org/0000-0002-9721-5782</orcidid><orcidid>https://orcid.org/0000-0002-4573-8768</orcidid><orcidid>https://orcid.org/0000-0001-7935-2567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2332-7782 |
ispartof | IEEE transactions on transportation electrification, 2024-09, Vol.10 (3), p.7358-7373 |
issn | 2332-7782 2577-4212 2332-7782 |
language | eng |
recordid | cdi_proquest_journals_3106512787 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Congestion Congestion management Coordination distributed optimization Distribution networks dynamic tariff (DT) electric vehicle (EV) Electric vehicle charging Electric vehicles Indexes Information management Optimization Partial discharges Power system dynamics Spatial distribution Tariffs Transportation Transportation networks Travel time Vehicle dynamics |
title | Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Dynamic%20Tariff%20for%20Congestion%20Management%20in%20Distribution%20Networks%20Considering%20Temporal-Spatial%20Coordination%20of%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20transportation%20electrification&rft.au=Shen,%20Feifan&rft.date=2024-09-01&rft.volume=10&rft.issue=3&rft.spage=7358&rft.epage=7373&rft.pages=7358-7373&rft.issn=2332-7782&rft.eissn=2332-7782&rft.coden=ITTEBP&rft_id=info:doi/10.1109/TTE.2023.3332892&rft_dat=%3Cproquest_cross%3E3106512787%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106512787&rft_id=info:pmid/&rft_ieee_id=10318166&rfr_iscdi=true |