Loading…

Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles

A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on transportation electrification 2024-09, Vol.10 (3), p.7358-7373
Main Authors: Shen, Feifan, Lin, Siyao, Wei, Juan, Huang, Sheng, Wu, Qiuwei, Shen, Yangwu, Zhu, Lipeng, Wang, Pengda, Wang, Bozhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63
container_end_page 7373
container_issue 3
container_start_page 7358
container_title IEEE transactions on transportation electrification
container_volume 10
creator Shen, Feifan
Lin, Siyao
Wei, Juan
Huang, Sheng
Wu, Qiuwei
Shen, Yangwu
Zhu, Lipeng
Wang, Pengda
Wang, Bozhong
description A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route as well as the charging and discharging (C&D) behavior of EVs in the transportation network (TN). Second, a distributed congestion management framework based on the asynchronous distributed alternating direction method of multipliers (AD-ADMM) was introduced. Using the proposed framework, DDTs were iteratively optimized between the distribution system operator (DSO) and aggregators to achieve optimal EV routing in the TN and congestion management in the distribution network. Finally, case studies were conducted on two test systems, and the numerical results showed that the proposed DDT method can optimize the temporal-spatial distribution of EVs in the TN, minimize the travel time and C&D costs of EVs in each aggregator, and effectively avoid congestion in the distribution network. Moreover, the optimization efficiency and privacy information protection of aggregators in the DT-based congestion management method could be improved.
doi_str_mv 10.1109/TTE.2023.3332892
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106512787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318166</ieee_id><sourcerecordid>3106512787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhCMEElXpnQMHS5xT_MjDOaK2PKQCBwLXyInXxSWxi50K9T_wo3FohXrakXZmVvtF0SXBU0JwcVOWiynFlE0ZY5QX9CQa0aDiPOf09EifRxPv1xhjkrK0INko-plr3ztdb3uQaL4zotMNKoXTSiFlHZpZswLfa2vQkzBiBR2YHmmD_nPD6hn6b-s-_WD3WoLTZoVK6DbWiTZ-3YheizYsrZPaiL-IVWjRQhM6GvQOH7ppwV9EZ0q0HiaHOY7e7hbl7CFevtw_zm6XcUOTtI9lnVHFMQcpmRKCKgm8yQUrijRPCWBZpEnGG8IocIETUeAURC1rTpJEcsjYOLre926c_dqG96q13ToTTlaM4CwlNOd5cOG9q3HWeweq2jjdCberCK4G7FXAXg3YqwP2ELnaRzQAHNkZ4STL2C8u8YFp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106512787</pqid></control><display><type>article</type><title>Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shen, Feifan ; Lin, Siyao ; Wei, Juan ; Huang, Sheng ; Wu, Qiuwei ; Shen, Yangwu ; Zhu, Lipeng ; Wang, Pengda ; Wang, Bozhong</creator><creatorcontrib>Shen, Feifan ; Lin, Siyao ; Wei, Juan ; Huang, Sheng ; Wu, Qiuwei ; Shen, Yangwu ; Zhu, Lipeng ; Wang, Pengda ; Wang, Bozhong</creatorcontrib><description>A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route as well as the charging and discharging (C&amp;D) behavior of EVs in the transportation network (TN). Second, a distributed congestion management framework based on the asynchronous distributed alternating direction method of multipliers (AD-ADMM) was introduced. Using the proposed framework, DDTs were iteratively optimized between the distribution system operator (DSO) and aggregators to achieve optimal EV routing in the TN and congestion management in the distribution network. Finally, case studies were conducted on two test systems, and the numerical results showed that the proposed DDT method can optimize the temporal-spatial distribution of EVs in the TN, minimize the travel time and C&amp;D costs of EVs in each aggregator, and effectively avoid congestion in the distribution network. Moreover, the optimization efficiency and privacy information protection of aggregators in the DT-based congestion management method could be improved.</description><identifier>ISSN: 2332-7782</identifier><identifier>ISSN: 2577-4212</identifier><identifier>EISSN: 2332-7782</identifier><identifier>DOI: 10.1109/TTE.2023.3332892</identifier><identifier>CODEN: ITTEBP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Congestion ; Congestion management ; Coordination ; distributed optimization ; Distribution networks ; dynamic tariff (DT) ; electric vehicle (EV) ; Electric vehicle charging ; Electric vehicles ; Indexes ; Information management ; Optimization ; Partial discharges ; Power system dynamics ; Spatial distribution ; Tariffs ; Transportation ; Transportation networks ; Travel time ; Vehicle dynamics</subject><ispartof>IEEE transactions on transportation electrification, 2024-09, Vol.10 (3), p.7358-7373</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63</cites><orcidid>0000-0003-0126-4430 ; 0000-0002-6413-3166 ; 0000-0002-9721-5782 ; 0000-0002-4573-8768 ; 0000-0001-7935-2567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Shen, Feifan</creatorcontrib><creatorcontrib>Lin, Siyao</creatorcontrib><creatorcontrib>Wei, Juan</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Wu, Qiuwei</creatorcontrib><creatorcontrib>Shen, Yangwu</creatorcontrib><creatorcontrib>Zhu, Lipeng</creatorcontrib><creatorcontrib>Wang, Pengda</creatorcontrib><creatorcontrib>Wang, Bozhong</creatorcontrib><title>Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles</title><title>IEEE transactions on transportation electrification</title><addtitle>TTE</addtitle><description>A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route as well as the charging and discharging (C&amp;D) behavior of EVs in the transportation network (TN). Second, a distributed congestion management framework based on the asynchronous distributed alternating direction method of multipliers (AD-ADMM) was introduced. Using the proposed framework, DDTs were iteratively optimized between the distribution system operator (DSO) and aggregators to achieve optimal EV routing in the TN and congestion management in the distribution network. Finally, case studies were conducted on two test systems, and the numerical results showed that the proposed DDT method can optimize the temporal-spatial distribution of EVs in the TN, minimize the travel time and C&amp;D costs of EVs in each aggregator, and effectively avoid congestion in the distribution network. Moreover, the optimization efficiency and privacy information protection of aggregators in the DT-based congestion management method could be improved.</description><subject>Congestion</subject><subject>Congestion management</subject><subject>Coordination</subject><subject>distributed optimization</subject><subject>Distribution networks</subject><subject>dynamic tariff (DT)</subject><subject>electric vehicle (EV)</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Indexes</subject><subject>Information management</subject><subject>Optimization</subject><subject>Partial discharges</subject><subject>Power system dynamics</subject><subject>Spatial distribution</subject><subject>Tariffs</subject><subject>Transportation</subject><subject>Transportation networks</subject><subject>Travel time</subject><subject>Vehicle dynamics</subject><issn>2332-7782</issn><issn>2577-4212</issn><issn>2332-7782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhCMEElXpnQMHS5xT_MjDOaK2PKQCBwLXyInXxSWxi50K9T_wo3FohXrakXZmVvtF0SXBU0JwcVOWiynFlE0ZY5QX9CQa0aDiPOf09EifRxPv1xhjkrK0INko-plr3ztdb3uQaL4zotMNKoXTSiFlHZpZswLfa2vQkzBiBR2YHmmD_nPD6hn6b-s-_WD3WoLTZoVK6DbWiTZ-3YheizYsrZPaiL-IVWjRQhM6GvQOH7ppwV9EZ0q0HiaHOY7e7hbl7CFevtw_zm6XcUOTtI9lnVHFMQcpmRKCKgm8yQUrijRPCWBZpEnGG8IocIETUeAURC1rTpJEcsjYOLre926c_dqG96q13ToTTlaM4CwlNOd5cOG9q3HWeweq2jjdCberCK4G7FXAXg3YqwP2ELnaRzQAHNkZ4STL2C8u8YFp</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Shen, Feifan</creator><creator>Lin, Siyao</creator><creator>Wei, Juan</creator><creator>Huang, Sheng</creator><creator>Wu, Qiuwei</creator><creator>Shen, Yangwu</creator><creator>Zhu, Lipeng</creator><creator>Wang, Pengda</creator><creator>Wang, Bozhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0126-4430</orcidid><orcidid>https://orcid.org/0000-0002-6413-3166</orcidid><orcidid>https://orcid.org/0000-0002-9721-5782</orcidid><orcidid>https://orcid.org/0000-0002-4573-8768</orcidid><orcidid>https://orcid.org/0000-0001-7935-2567</orcidid></search><sort><creationdate>20240901</creationdate><title>Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles</title><author>Shen, Feifan ; Lin, Siyao ; Wei, Juan ; Huang, Sheng ; Wu, Qiuwei ; Shen, Yangwu ; Zhu, Lipeng ; Wang, Pengda ; Wang, Bozhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Congestion</topic><topic>Congestion management</topic><topic>Coordination</topic><topic>distributed optimization</topic><topic>Distribution networks</topic><topic>dynamic tariff (DT)</topic><topic>electric vehicle (EV)</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Indexes</topic><topic>Information management</topic><topic>Optimization</topic><topic>Partial discharges</topic><topic>Power system dynamics</topic><topic>Spatial distribution</topic><topic>Tariffs</topic><topic>Transportation</topic><topic>Transportation networks</topic><topic>Travel time</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Feifan</creatorcontrib><creatorcontrib>Lin, Siyao</creatorcontrib><creatorcontrib>Wei, Juan</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Wu, Qiuwei</creatorcontrib><creatorcontrib>Shen, Yangwu</creatorcontrib><creatorcontrib>Zhu, Lipeng</creatorcontrib><creatorcontrib>Wang, Pengda</creatorcontrib><creatorcontrib>Wang, Bozhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on transportation electrification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Feifan</au><au>Lin, Siyao</au><au>Wei, Juan</au><au>Huang, Sheng</au><au>Wu, Qiuwei</au><au>Shen, Yangwu</au><au>Zhu, Lipeng</au><au>Wang, Pengda</au><au>Wang, Bozhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles</atitle><jtitle>IEEE transactions on transportation electrification</jtitle><stitle>TTE</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><spage>7358</spage><epage>7373</epage><pages>7358-7373</pages><issn>2332-7782</issn><issn>2577-4212</issn><eissn>2332-7782</eissn><coden>ITTEBP</coden><abstract>A distributed dynamic tariff (DDT) method was proposed in this study for congestion management in distribution networks considering the temporal-spatial coordination of electric vehicles (EVs). First, a quadratic DT-based congestion management model was formulated considering the full travel route as well as the charging and discharging (C&amp;D) behavior of EVs in the transportation network (TN). Second, a distributed congestion management framework based on the asynchronous distributed alternating direction method of multipliers (AD-ADMM) was introduced. Using the proposed framework, DDTs were iteratively optimized between the distribution system operator (DSO) and aggregators to achieve optimal EV routing in the TN and congestion management in the distribution network. Finally, case studies were conducted on two test systems, and the numerical results showed that the proposed DDT method can optimize the temporal-spatial distribution of EVs in the TN, minimize the travel time and C&amp;D costs of EVs in each aggregator, and effectively avoid congestion in the distribution network. Moreover, the optimization efficiency and privacy information protection of aggregators in the DT-based congestion management method could be improved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTE.2023.3332892</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0126-4430</orcidid><orcidid>https://orcid.org/0000-0002-6413-3166</orcidid><orcidid>https://orcid.org/0000-0002-9721-5782</orcidid><orcidid>https://orcid.org/0000-0002-4573-8768</orcidid><orcidid>https://orcid.org/0000-0001-7935-2567</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2332-7782
ispartof IEEE transactions on transportation electrification, 2024-09, Vol.10 (3), p.7358-7373
issn 2332-7782
2577-4212
2332-7782
language eng
recordid cdi_proquest_journals_3106512787
source IEEE Electronic Library (IEL) Journals
subjects Congestion
Congestion management
Coordination
distributed optimization
Distribution networks
dynamic tariff (DT)
electric vehicle (EV)
Electric vehicle charging
Electric vehicles
Indexes
Information management
Optimization
Partial discharges
Power system dynamics
Spatial distribution
Tariffs
Transportation
Transportation networks
Travel time
Vehicle dynamics
title Distributed Dynamic Tariff for Congestion Management in Distribution Networks Considering Temporal-Spatial Coordination of Electric Vehicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Dynamic%20Tariff%20for%20Congestion%20Management%20in%20Distribution%20Networks%20Considering%20Temporal-Spatial%20Coordination%20of%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20transportation%20electrification&rft.au=Shen,%20Feifan&rft.date=2024-09-01&rft.volume=10&rft.issue=3&rft.spage=7358&rft.epage=7373&rft.pages=7358-7373&rft.issn=2332-7782&rft.eissn=2332-7782&rft.coden=ITTEBP&rft_id=info:doi/10.1109/TTE.2023.3332892&rft_dat=%3Cproquest_cross%3E3106512787%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-db62f808edd3faa2fde8c7a3995751e0d95468c132e8a04a905eabdb8144d8e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106512787&rft_id=info:pmid/&rft_ieee_id=10318166&rfr_iscdi=true