Loading…
Classification and transformations of quantum circuit decompositions for permutation operations
Efficient decomposition of permutation unitaries is vital as they frequently appear in quantum computing. In this paper, we identify the key properties that impact the decomposition process of permutation unitaries. Then, we classify these decompositions based on the identified properties, establish...
Saved in:
Published in: | Quantum information processing 2024-09, Vol.23 (9), Article 322 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Efficient decomposition of permutation unitaries is vital as they frequently appear in quantum computing. In this paper, we identify the key properties that impact the decomposition process of permutation unitaries. Then, we classify these decompositions based on the identified properties, establishing a comprehensive framework for analysis. We demonstrate the applicability of the presented framework through the widely used multi-controlled Toffoli gate, revealing that the existing decompositions in the literature belong to only four out of ten identified classes. Motivated by this finding, we propose transformations that can adapt a given decomposition into a member of another class, enabling resource reduction. |
---|---|
ISSN: | 1573-1332 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-024-04508-5 |