Loading…

Theoretical and Experimental Study of Diffraction by a Thin Cone

The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral e...

Full description

Saved in:
Bibliographic Details
Published in:Acoustical physics 2024-06, Vol.70 (3), p.424-433
Main Authors: Laptev, A. Yu, Korol’kov, A. I., Shanin, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413
container_end_page 433
container_issue 3
container_start_page 424
container_title Acoustical physics
container_volume 70
creator Laptev, A. Yu
Korol’kov, A. I.
Shanin, A. V.
description The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral equation, which can be solved using the Fourier transform. An experimental measurement of the diffracted field is performed. The experiment is based on the M-sequence method adapted for narrowband sound sources. The experimental and theoretical results are compared.
doi_str_mv 10.1134/S1063771023600754
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106713684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106713684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0dy8Z6fUVoWCi9b1kMnDTqmTmkzB_r0pFVyIq3u553E5B6FrILcAjN8tgEimFBDKJCFK8BM0AiFpJbUUp2UvcHXAz9FFzmtCSM0YHaH75crH5IfOmg02vcPTr61P3Yfvh3JYDDu3xzHgxy6EZOzQxR63e2zwctX1eBJ7f4nOgtlkf_Uzx-htNl1Onqv569PL5GFeWaj1UIXgNG21F8EyoUBbao2qW6eIMlxB7VqnPZjga8GlYKG21IElrkQwwDmwMbo5-m5T_Nz5PDTruEt9edmwEk4Bk5oXFhxZNsWckw_NtoQxad8AaQ5FNX-KKhp61OTC7d99-nX-X_QNGRRovQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106713684</pqid></control><display><type>article</type><title>Theoretical and Experimental Study of Diffraction by a Thin Cone</title><source>Springer Link</source><creator>Laptev, A. Yu ; Korol’kov, A. I. ; Shanin, A. V.</creator><creatorcontrib>Laptev, A. Yu ; Korol’kov, A. I. ; Shanin, A. V.</creatorcontrib><description>The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral equation, which can be solved using the Fourier transform. An experimental measurement of the diffracted field is performed. The experiment is based on the M-sequence method adapted for narrowband sound sources. The experimental and theoretical results are compared.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771023600754</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustics ; Boundary integral method ; Classical Problems of Linear Acoustics and Wave Theory ; Exact solutions ; Fourier transforms ; Integral equations ; Narrowband ; Physics ; Physics and Astronomy ; Sound diffraction ; Sound sources ; Wave diffraction</subject><ispartof>Acoustical physics, 2024-06, Vol.70 (3), p.424-433</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7710, Acoustical Physics, 2024, Vol. 70, No. 3, pp. 424–433. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Laptev, A. Yu</creatorcontrib><creatorcontrib>Korol’kov, A. I.</creatorcontrib><creatorcontrib>Shanin, A. V.</creatorcontrib><title>Theoretical and Experimental Study of Diffraction by a Thin Cone</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral equation, which can be solved using the Fourier transform. An experimental measurement of the diffracted field is performed. The experiment is based on the M-sequence method adapted for narrowband sound sources. The experimental and theoretical results are compared.</description><subject>Acoustics</subject><subject>Boundary integral method</subject><subject>Classical Problems of Linear Acoustics and Wave Theory</subject><subject>Exact solutions</subject><subject>Fourier transforms</subject><subject>Integral equations</subject><subject>Narrowband</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sound diffraction</subject><subject>Sound sources</subject><subject>Wave diffraction</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0dy8Z6fUVoWCi9b1kMnDTqmTmkzB_r0pFVyIq3u553E5B6FrILcAjN8tgEimFBDKJCFK8BM0AiFpJbUUp2UvcHXAz9FFzmtCSM0YHaH75crH5IfOmg02vcPTr61P3Yfvh3JYDDu3xzHgxy6EZOzQxR63e2zwctX1eBJ7f4nOgtlkf_Uzx-htNl1Onqv569PL5GFeWaj1UIXgNG21F8EyoUBbao2qW6eIMlxB7VqnPZjga8GlYKG21IElrkQwwDmwMbo5-m5T_Nz5PDTruEt9edmwEk4Bk5oXFhxZNsWckw_NtoQxad8AaQ5FNX-KKhp61OTC7d99-nX-X_QNGRRovQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Laptev, A. Yu</creator><creator>Korol’kov, A. I.</creator><creator>Shanin, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Theoretical and Experimental Study of Diffraction by a Thin Cone</title><author>Laptev, A. Yu ; Korol’kov, A. I. ; Shanin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Boundary integral method</topic><topic>Classical Problems of Linear Acoustics and Wave Theory</topic><topic>Exact solutions</topic><topic>Fourier transforms</topic><topic>Integral equations</topic><topic>Narrowband</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sound diffraction</topic><topic>Sound sources</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laptev, A. Yu</creatorcontrib><creatorcontrib>Korol’kov, A. I.</creatorcontrib><creatorcontrib>Shanin, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laptev, A. Yu</au><au>Korol’kov, A. I.</au><au>Shanin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Study of Diffraction by a Thin Cone</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>424</spage><epage>433</epage><pages>424-433</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral equation, which can be solved using the Fourier transform. An experimental measurement of the diffracted field is performed. The experiment is based on the M-sequence method adapted for narrowband sound sources. The experimental and theoretical results are compared.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771023600754</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7710
ispartof Acoustical physics, 2024-06, Vol.70 (3), p.424-433
issn 1063-7710
1562-6865
language eng
recordid cdi_proquest_journals_3106713684
source Springer Link
subjects Acoustics
Boundary integral method
Classical Problems of Linear Acoustics and Wave Theory
Exact solutions
Fourier transforms
Integral equations
Narrowband
Physics
Physics and Astronomy
Sound diffraction
Sound sources
Wave diffraction
title Theoretical and Experimental Study of Diffraction by a Thin Cone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Study%20of%20Diffraction%20by%20a%20Thin%20Cone&rft.jtitle=Acoustical%20physics&rft.au=Laptev,%20A.%20Yu&rft.date=2024-06-01&rft.volume=70&rft.issue=3&rft.spage=424&rft.epage=433&rft.pages=424-433&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771023600754&rft_dat=%3Cproquest_cross%3E3106713684%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106713684&rft_id=info:pmid/&rfr_iscdi=true