Loading…
Theoretical and Experimental Study of Diffraction by a Thin Cone
The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral e...
Saved in:
Published in: | Acoustical physics 2024-06, Vol.70 (3), p.424-433 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413 |
container_end_page | 433 |
container_issue | 3 |
container_start_page | 424 |
container_title | Acoustical physics |
container_volume | 70 |
creator | Laptev, A. Yu Korol’kov, A. I. Shanin, A. V. |
description | The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral equation, which can be solved using the Fourier transform. An experimental measurement of the diffracted field is performed. The experiment is based on the M-sequence method adapted for narrowband sound sources. The experimental and theoretical results are compared. |
doi_str_mv | 10.1134/S1063771023600754 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106713684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106713684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0dy8Z6fUVoWCi9b1kMnDTqmTmkzB_r0pFVyIq3u553E5B6FrILcAjN8tgEimFBDKJCFK8BM0AiFpJbUUp2UvcHXAz9FFzmtCSM0YHaH75crH5IfOmg02vcPTr61P3Yfvh3JYDDu3xzHgxy6EZOzQxR63e2zwctX1eBJ7f4nOgtlkf_Uzx-htNl1Onqv569PL5GFeWaj1UIXgNG21F8EyoUBbao2qW6eIMlxB7VqnPZjga8GlYKG21IElrkQwwDmwMbo5-m5T_Nz5PDTruEt9edmwEk4Bk5oXFhxZNsWckw_NtoQxad8AaQ5FNX-KKhp61OTC7d99-nX-X_QNGRRovQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106713684</pqid></control><display><type>article</type><title>Theoretical and Experimental Study of Diffraction by a Thin Cone</title><source>Springer Link</source><creator>Laptev, A. Yu ; Korol’kov, A. I. ; Shanin, A. V.</creator><creatorcontrib>Laptev, A. Yu ; Korol’kov, A. I. ; Shanin, A. V.</creatorcontrib><description>The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral equation, which can be solved using the Fourier transform. An experimental measurement of the diffracted field is performed. The experiment is based on the M-sequence method adapted for narrowband sound sources. The experimental and theoretical results are compared.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771023600754</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustics ; Boundary integral method ; Classical Problems of Linear Acoustics and Wave Theory ; Exact solutions ; Fourier transforms ; Integral equations ; Narrowband ; Physics ; Physics and Astronomy ; Sound diffraction ; Sound sources ; Wave diffraction</subject><ispartof>Acoustical physics, 2024-06, Vol.70 (3), p.424-433</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7710, Acoustical Physics, 2024, Vol. 70, No. 3, pp. 424–433. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Laptev, A. Yu</creatorcontrib><creatorcontrib>Korol’kov, A. I.</creatorcontrib><creatorcontrib>Shanin, A. V.</creatorcontrib><title>Theoretical and Experimental Study of Diffraction by a Thin Cone</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral equation, which can be solved using the Fourier transform. An experimental measurement of the diffracted field is performed. The experiment is based on the M-sequence method adapted for narrowband sound sources. The experimental and theoretical results are compared.</description><subject>Acoustics</subject><subject>Boundary integral method</subject><subject>Classical Problems of Linear Acoustics and Wave Theory</subject><subject>Exact solutions</subject><subject>Fourier transforms</subject><subject>Integral equations</subject><subject>Narrowband</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sound diffraction</subject><subject>Sound sources</subject><subject>Wave diffraction</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0dy8Z6fUVoWCi9b1kMnDTqmTmkzB_r0pFVyIq3u553E5B6FrILcAjN8tgEimFBDKJCFK8BM0AiFpJbUUp2UvcHXAz9FFzmtCSM0YHaH75crH5IfOmg02vcPTr61P3Yfvh3JYDDu3xzHgxy6EZOzQxR63e2zwctX1eBJ7f4nOgtlkf_Uzx-htNl1Onqv569PL5GFeWaj1UIXgNG21F8EyoUBbao2qW6eIMlxB7VqnPZjga8GlYKG21IElrkQwwDmwMbo5-m5T_Nz5PDTruEt9edmwEk4Bk5oXFhxZNsWckw_NtoQxad8AaQ5FNX-KKhp61OTC7d99-nX-X_QNGRRovQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Laptev, A. Yu</creator><creator>Korol’kov, A. I.</creator><creator>Shanin, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Theoretical and Experimental Study of Diffraction by a Thin Cone</title><author>Laptev, A. Yu ; Korol’kov, A. I. ; Shanin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Boundary integral method</topic><topic>Classical Problems of Linear Acoustics and Wave Theory</topic><topic>Exact solutions</topic><topic>Fourier transforms</topic><topic>Integral equations</topic><topic>Narrowband</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sound diffraction</topic><topic>Sound sources</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laptev, A. Yu</creatorcontrib><creatorcontrib>Korol’kov, A. I.</creatorcontrib><creatorcontrib>Shanin, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laptev, A. Yu</au><au>Korol’kov, A. I.</au><au>Shanin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Study of Diffraction by a Thin Cone</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>424</spage><epage>433</epage><pages>424-433</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>The problem of diffraction of ultrasonic waves by a sharp-angled rigid cone is studied. In the framework of the parabolic equation method, an analytical solution of the problem with an arbitrarily located point source is constructed. Namely, the problem is reduced to the Volterra boundary integral equation, which can be solved using the Fourier transform. An experimental measurement of the diffracted field is performed. The experiment is based on the M-sequence method adapted for narrowband sound sources. The experimental and theoretical results are compared.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771023600754</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7710 |
ispartof | Acoustical physics, 2024-06, Vol.70 (3), p.424-433 |
issn | 1063-7710 1562-6865 |
language | eng |
recordid | cdi_proquest_journals_3106713684 |
source | Springer Link |
subjects | Acoustics Boundary integral method Classical Problems of Linear Acoustics and Wave Theory Exact solutions Fourier transforms Integral equations Narrowband Physics Physics and Astronomy Sound diffraction Sound sources Wave diffraction |
title | Theoretical and Experimental Study of Diffraction by a Thin Cone |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Study%20of%20Diffraction%20by%20a%20Thin%20Cone&rft.jtitle=Acoustical%20physics&rft.au=Laptev,%20A.%20Yu&rft.date=2024-06-01&rft.volume=70&rft.issue=3&rft.spage=424&rft.epage=433&rft.pages=424-433&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771023600754&rft_dat=%3Cproquest_cross%3E3106713684%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-ffd82b8e5fc35718c2ca79bd707a4719dbd8e1afe954653f9c2d1c0d562a14413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106713684&rft_id=info:pmid/&rfr_iscdi=true |