Loading…
Sensitivity Analysis in Parametric Convex Vector Optimization
In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile...
Saved in:
Published in: | Set-valued and variational analysis 2024-12, Vol.32 (4), Article 29 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Set-valued and variational analysis |
container_volume | 32 |
creator | An, Duong Thi Viet Tung, Le Thanh |
description | In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile of the above three kinds of perturbation maps. Because of the convexity assumptions, the conditions set are fairly simple if compared to those in the general case. In addition, our conditions are stated directly on the data of the problem. It is worth emphasizing that our approach is based on convex analysis tools which are different from those in the general case. |
doi_str_mv | 10.1007/s11228-024-00733-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106714034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106714034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Fz9GXpG3Sg4el6CosrODiNaRpKlm2f0yyi_XTG63ozdObgd8Mj0HoksA1AeA3nhBKBQaa4mgZw-wIzYjgHEOWkuNfzdgpOvN-GyGAgszQ7bPpvA32YMOYLDq1G731ie2SJ-VUa4KzOin77mDekxejQ--S9RBsaz9UsH13jk4atfPm4ufO0eb-blM-4NV6-VguVlhTgIBVTquCqkYZyIuKgmFUaEWbIvoa8rxIayUEF8JkWZplQumK11HVWV0D42yOrqbawfVve-OD3PZ7F5_1khHIOUmBpZGiE6Vd770zjRycbZUbJQH5tZKcVpJxJfm9kmQxxKaQj3D3atxf9T-pT067adA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106714034</pqid></control><display><type>article</type><title>Sensitivity Analysis in Parametric Convex Vector Optimization</title><source>Springer Link</source><creator>An, Duong Thi Viet ; Tung, Le Thanh</creator><creatorcontrib>An, Duong Thi Viet ; Tung, Le Thanh</creatorcontrib><description>In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile of the above three kinds of perturbation maps. Because of the convexity assumptions, the conditions set are fairly simple if compared to those in the general case. In addition, our conditions are stated directly on the data of the problem. It is worth emphasizing that our approach is based on convex analysis tools which are different from those in the general case.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-024-00733-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Convexity ; Mathematics ; Mathematics and Statistics ; Optimization ; Parameter sensitivity ; Perturbation ; Sensitivity analysis</subject><ispartof>Set-valued and variational analysis, 2024-12, Vol.32 (4), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373</cites><orcidid>0000-0003-1822-4929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>An, Duong Thi Viet</creatorcontrib><creatorcontrib>Tung, Le Thanh</creatorcontrib><title>Sensitivity Analysis in Parametric Convex Vector Optimization</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile of the above three kinds of perturbation maps. Because of the convexity assumptions, the conditions set are fairly simple if compared to those in the general case. In addition, our conditions are stated directly on the data of the problem. It is worth emphasizing that our approach is based on convex analysis tools which are different from those in the general case.</description><subject>Analysis</subject><subject>Convexity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Perturbation</subject><subject>Sensitivity analysis</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AU8Fz9GXpG3Sg4el6CosrODiNaRpKlm2f0yyi_XTG63ozdObgd8Mj0HoksA1AeA3nhBKBQaa4mgZw-wIzYjgHEOWkuNfzdgpOvN-GyGAgszQ7bPpvA32YMOYLDq1G731ie2SJ-VUa4KzOin77mDekxejQ--S9RBsaz9UsH13jk4atfPm4ufO0eb-blM-4NV6-VguVlhTgIBVTquCqkYZyIuKgmFUaEWbIvoa8rxIayUEF8JkWZplQumK11HVWV0D42yOrqbawfVve-OD3PZ7F5_1khHIOUmBpZGiE6Vd770zjRycbZUbJQH5tZKcVpJxJfm9kmQxxKaQj3D3atxf9T-pT067adA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>An, Duong Thi Viet</creator><creator>Tung, Le Thanh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1822-4929</orcidid></search><sort><creationdate>20241201</creationdate><title>Sensitivity Analysis in Parametric Convex Vector Optimization</title><author>An, Duong Thi Viet ; Tung, Le Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Convexity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Perturbation</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Duong Thi Viet</creatorcontrib><creatorcontrib>Tung, Le Thanh</creatorcontrib><collection>CrossRef</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Duong Thi Viet</au><au>Tung, Le Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity Analysis in Parametric Convex Vector Optimization</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><artnum>29</artnum><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile of the above three kinds of perturbation maps. Because of the convexity assumptions, the conditions set are fairly simple if compared to those in the general case. In addition, our conditions are stated directly on the data of the problem. It is worth emphasizing that our approach is based on convex analysis tools which are different from those in the general case.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-024-00733-3</doi><orcidid>https://orcid.org/0000-0003-1822-4929</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-0533 |
ispartof | Set-valued and variational analysis, 2024-12, Vol.32 (4), Article 29 |
issn | 1877-0533 1877-0541 |
language | eng |
recordid | cdi_proquest_journals_3106714034 |
source | Springer Link |
subjects | Analysis Convexity Mathematics Mathematics and Statistics Optimization Parameter sensitivity Perturbation Sensitivity analysis |
title | Sensitivity Analysis in Parametric Convex Vector Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20Analysis%20in%20Parametric%20Convex%20Vector%20Optimization&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=An,%20Duong%20Thi%20Viet&rft.date=2024-12-01&rft.volume=32&rft.issue=4&rft.artnum=29&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-024-00733-3&rft_dat=%3Cproquest_cross%3E3106714034%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106714034&rft_id=info:pmid/&rfr_iscdi=true |