Loading…

Sensitivity Analysis in Parametric Convex Vector Optimization

In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile...

Full description

Saved in:
Bibliographic Details
Published in:Set-valued and variational analysis 2024-12, Vol.32 (4), Article 29
Main Authors: An, Duong Thi Viet, Tung, Le Thanh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373
container_end_page
container_issue 4
container_start_page
container_title Set-valued and variational analysis
container_volume 32
creator An, Duong Thi Viet
Tung, Le Thanh
description In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile of the above three kinds of perturbation maps. Because of the convexity assumptions, the conditions set are fairly simple if compared to those in the general case. In addition, our conditions are stated directly on the data of the problem. It is worth emphasizing that our approach is based on convex analysis tools which are different from those in the general case.
doi_str_mv 10.1007/s11228-024-00733-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106714034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106714034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Fz9GXpG3Sg4el6CosrODiNaRpKlm2f0yyi_XTG63ozdObgd8Mj0HoksA1AeA3nhBKBQaa4mgZw-wIzYjgHEOWkuNfzdgpOvN-GyGAgszQ7bPpvA32YMOYLDq1G731ie2SJ-VUa4KzOin77mDekxejQ--S9RBsaz9UsH13jk4atfPm4ufO0eb-blM-4NV6-VguVlhTgIBVTquCqkYZyIuKgmFUaEWbIvoa8rxIayUEF8JkWZplQumK11HVWV0D42yOrqbawfVve-OD3PZ7F5_1khHIOUmBpZGiE6Vd770zjRycbZUbJQH5tZKcVpJxJfm9kmQxxKaQj3D3atxf9T-pT067adA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106714034</pqid></control><display><type>article</type><title>Sensitivity Analysis in Parametric Convex Vector Optimization</title><source>Springer Link</source><creator>An, Duong Thi Viet ; Tung, Le Thanh</creator><creatorcontrib>An, Duong Thi Viet ; Tung, Le Thanh</creatorcontrib><description>In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile of the above three kinds of perturbation maps. Because of the convexity assumptions, the conditions set are fairly simple if compared to those in the general case. In addition, our conditions are stated directly on the data of the problem. It is worth emphasizing that our approach is based on convex analysis tools which are different from those in the general case.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-024-00733-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Convexity ; Mathematics ; Mathematics and Statistics ; Optimization ; Parameter sensitivity ; Perturbation ; Sensitivity analysis</subject><ispartof>Set-valued and variational analysis, 2024-12, Vol.32 (4), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373</cites><orcidid>0000-0003-1822-4929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>An, Duong Thi Viet</creatorcontrib><creatorcontrib>Tung, Le Thanh</creatorcontrib><title>Sensitivity Analysis in Parametric Convex Vector Optimization</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile of the above three kinds of perturbation maps. Because of the convexity assumptions, the conditions set are fairly simple if compared to those in the general case. In addition, our conditions are stated directly on the data of the problem. It is worth emphasizing that our approach is based on convex analysis tools which are different from those in the general case.</description><subject>Analysis</subject><subject>Convexity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Perturbation</subject><subject>Sensitivity analysis</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AU8Fz9GXpG3Sg4el6CosrODiNaRpKlm2f0yyi_XTG63ozdObgd8Mj0HoksA1AeA3nhBKBQaa4mgZw-wIzYjgHEOWkuNfzdgpOvN-GyGAgszQ7bPpvA32YMOYLDq1G731ie2SJ-VUa4KzOin77mDekxejQ--S9RBsaz9UsH13jk4atfPm4ufO0eb-blM-4NV6-VguVlhTgIBVTquCqkYZyIuKgmFUaEWbIvoa8rxIayUEF8JkWZplQumK11HVWV0D42yOrqbawfVve-OD3PZ7F5_1khHIOUmBpZGiE6Vd770zjRycbZUbJQH5tZKcVpJxJfm9kmQxxKaQj3D3atxf9T-pT067adA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>An, Duong Thi Viet</creator><creator>Tung, Le Thanh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1822-4929</orcidid></search><sort><creationdate>20241201</creationdate><title>Sensitivity Analysis in Parametric Convex Vector Optimization</title><author>An, Duong Thi Viet ; Tung, Le Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Convexity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Perturbation</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Duong Thi Viet</creatorcontrib><creatorcontrib>Tung, Le Thanh</creatorcontrib><collection>CrossRef</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Duong Thi Viet</au><au>Tung, Le Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity Analysis in Parametric Convex Vector Optimization</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><artnum>29</artnum><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>In this paper, sensitivity analysis of the efficient sets in parametric convex vector optimization is considered. Namely, the perturbation, weak perturbation, and proper perturbation maps are defined as set-valued maps. We establish the formulas for computing the Fréchet coderivative of the profile of the above three kinds of perturbation maps. Because of the convexity assumptions, the conditions set are fairly simple if compared to those in the general case. In addition, our conditions are stated directly on the data of the problem. It is worth emphasizing that our approach is based on convex analysis tools which are different from those in the general case.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-024-00733-3</doi><orcidid>https://orcid.org/0000-0003-1822-4929</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1877-0533
ispartof Set-valued and variational analysis, 2024-12, Vol.32 (4), Article 29
issn 1877-0533
1877-0541
language eng
recordid cdi_proquest_journals_3106714034
source Springer Link
subjects Analysis
Convexity
Mathematics
Mathematics and Statistics
Optimization
Parameter sensitivity
Perturbation
Sensitivity analysis
title Sensitivity Analysis in Parametric Convex Vector Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20Analysis%20in%20Parametric%20Convex%20Vector%20Optimization&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=An,%20Duong%20Thi%20Viet&rft.date=2024-12-01&rft.volume=32&rft.issue=4&rft.artnum=29&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-024-00733-3&rft_dat=%3Cproquest_cross%3E3106714034%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-a62b92afae069b20e328ca2f9e06d06694da88788e554558acb7d545d5dd0373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106714034&rft_id=info:pmid/&rfr_iscdi=true