Loading…

Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration

Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental & theoretical artificial intelligence 2024-10, Vol.36 (7), p.985-1002
Main Authors: Hiremath, Tej. C., K. S., Rekha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53
cites cdi_FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53
container_end_page 1002
container_issue 7
container_start_page 985
container_title Journal of experimental & theoretical artificial intelligence
container_volume 36
creator Hiremath, Tej. C.
K. S., Rekha
description Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cloud with optimal resource allocation is still a challenging task. The application migration is employed to reduce the dilemma of resource allocation. Hence, this paper proposes a technique for portability and interoperability-based application migration in the cloud platform. The cloud simulation is done with the Physical Machine (PM), Virtual Machine (VM), and container. The interoperable application migration is provided using the newly devised Lion-based shuffled shepherd (Lion-SS) optimisation algorithm. The Lion-SS algorithm combines the shuffled shepherd optimisation algorithm (SSOA) and the Lion optimisation algorithm (LOA). The new objective function is devised based on predicted load, demand, transmission cost, and resource capacity. Besides, the prediction of the load is performed using Deep long short-term memory (Deep LSTM). The proposed technique obtained the minimal load of 0.007 and resource capacity of 0.342.
doi_str_mv 10.1080/0952813X.2022.2117421
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107869288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107869288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53</originalsourceid><addsrcrecordid>eNp9kdtq3DAQhkVpods0jxAQ5NobHdaWfJcSmgMEcpNA7sRYHmcVbMkdaymbR-nT1s5ubnM1w_DNP4efsTMp1lJYcSHqUlmpn9dKKLVWUpqNkl_YSupKFVqY-itbLUyxQN_Zj2l6FULIUsoV-_cw5jCEN8ghRY4Rmh5b3iKOvEegGOILHzBvU8tD5D7FDCEiFQ1MMwfktyGjzztCnjq-3TcUWu77tGt5l4iPiTI0oQ95zyEuGhkpjUjH4ofOOPbBH3YYwgu9Zz_Ztw76CU-P8YQ9Xf9-vLot7h9u7q5-3RdeVTYXtfWVqZoSvOlUrUttrdz4DWrVNl4blA3Ol1bWq7Lz0JbKCNgogcp0BgBKfcLOD7ojpT87nLJ7TTuK80inpTC2qpW1M1UeKE9pmgg7N1IYgPZOCrfY4D5scIsN7mjD3Hd56AtxfsgAfxP1rcuw7xN1BNGH9zGfSfwHa72TcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107869288</pqid></control><display><type>article</type><title>Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration</title><source>Taylor and Francis Science and Technology Collection</source><creator>Hiremath, Tej. C. ; K. S., Rekha</creator><creatorcontrib>Hiremath, Tej. C. ; K. S., Rekha</creatorcontrib><description>Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cloud with optimal resource allocation is still a challenging task. The application migration is employed to reduce the dilemma of resource allocation. Hence, this paper proposes a technique for portability and interoperability-based application migration in the cloud platform. The cloud simulation is done with the Physical Machine (PM), Virtual Machine (VM), and container. The interoperable application migration is provided using the newly devised Lion-based shuffled shepherd (Lion-SS) optimisation algorithm. The Lion-SS algorithm combines the shuffled shepherd optimisation algorithm (SSOA) and the Lion optimisation algorithm (LOA). The new objective function is devised based on predicted load, demand, transmission cost, and resource capacity. Besides, the prediction of the load is performed using Deep long short-term memory (Deep LSTM). The proposed technique obtained the minimal load of 0.007 and resource capacity of 0.342.</description><identifier>ISSN: 0952-813X</identifier><identifier>EISSN: 1362-3079</identifier><identifier>DOI: 10.1080/0952813X.2022.2117421</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; Application migration ; cloud ; Cloud computing ; Containers ; deep long short-term memory ; Interoperability ; Optimization ; Portability ; Predictions ; Resource allocation ; resource capacity ; Virtual environments</subject><ispartof>Journal of experimental &amp; theoretical artificial intelligence, 2024-10, Vol.36 (7), p.985-1002</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53</citedby><cites>FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hiremath, Tej. C.</creatorcontrib><creatorcontrib>K. S., Rekha</creatorcontrib><title>Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration</title><title>Journal of experimental &amp; theoretical artificial intelligence</title><description>Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cloud with optimal resource allocation is still a challenging task. The application migration is employed to reduce the dilemma of resource allocation. Hence, this paper proposes a technique for portability and interoperability-based application migration in the cloud platform. The cloud simulation is done with the Physical Machine (PM), Virtual Machine (VM), and container. The interoperable application migration is provided using the newly devised Lion-based shuffled shepherd (Lion-SS) optimisation algorithm. The Lion-SS algorithm combines the shuffled shepherd optimisation algorithm (SSOA) and the Lion optimisation algorithm (LOA). The new objective function is devised based on predicted load, demand, transmission cost, and resource capacity. Besides, the prediction of the load is performed using Deep long short-term memory (Deep LSTM). The proposed technique obtained the minimal load of 0.007 and resource capacity of 0.342.</description><subject>Algorithms</subject><subject>Application migration</subject><subject>cloud</subject><subject>Cloud computing</subject><subject>Containers</subject><subject>deep long short-term memory</subject><subject>Interoperability</subject><subject>Optimization</subject><subject>Portability</subject><subject>Predictions</subject><subject>Resource allocation</subject><subject>resource capacity</subject><subject>Virtual environments</subject><issn>0952-813X</issn><issn>1362-3079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kdtq3DAQhkVpods0jxAQ5NobHdaWfJcSmgMEcpNA7sRYHmcVbMkdaymbR-nT1s5ubnM1w_DNP4efsTMp1lJYcSHqUlmpn9dKKLVWUpqNkl_YSupKFVqY-itbLUyxQN_Zj2l6FULIUsoV-_cw5jCEN8ghRY4Rmh5b3iKOvEegGOILHzBvU8tD5D7FDCEiFQ1MMwfktyGjzztCnjq-3TcUWu77tGt5l4iPiTI0oQ95zyEuGhkpjUjH4ofOOPbBH3YYwgu9Zz_Ztw76CU-P8YQ9Xf9-vLot7h9u7q5-3RdeVTYXtfWVqZoSvOlUrUttrdz4DWrVNl4blA3Ol1bWq7Lz0JbKCNgogcp0BgBKfcLOD7ojpT87nLJ7TTuK80inpTC2qpW1M1UeKE9pmgg7N1IYgPZOCrfY4D5scIsN7mjD3Hd56AtxfsgAfxP1rcuw7xN1BNGH9zGfSfwHa72TcA</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Hiremath, Tej. C.</creator><creator>K. S., Rekha</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241002</creationdate><title>Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration</title><author>Hiremath, Tej. C. ; K. S., Rekha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Application migration</topic><topic>cloud</topic><topic>Cloud computing</topic><topic>Containers</topic><topic>deep long short-term memory</topic><topic>Interoperability</topic><topic>Optimization</topic><topic>Portability</topic><topic>Predictions</topic><topic>Resource allocation</topic><topic>resource capacity</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiremath, Tej. C.</creatorcontrib><creatorcontrib>K. S., Rekha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of experimental &amp; theoretical artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiremath, Tej. C.</au><au>K. S., Rekha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration</atitle><jtitle>Journal of experimental &amp; theoretical artificial intelligence</jtitle><date>2024-10-02</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>985</spage><epage>1002</epage><pages>985-1002</pages><issn>0952-813X</issn><eissn>1362-3079</eissn><abstract>Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cloud with optimal resource allocation is still a challenging task. The application migration is employed to reduce the dilemma of resource allocation. Hence, this paper proposes a technique for portability and interoperability-based application migration in the cloud platform. The cloud simulation is done with the Physical Machine (PM), Virtual Machine (VM), and container. The interoperable application migration is provided using the newly devised Lion-based shuffled shepherd (Lion-SS) optimisation algorithm. The Lion-SS algorithm combines the shuffled shepherd optimisation algorithm (SSOA) and the Lion optimisation algorithm (LOA). The new objective function is devised based on predicted load, demand, transmission cost, and resource capacity. Besides, the prediction of the load is performed using Deep long short-term memory (Deep LSTM). The proposed technique obtained the minimal load of 0.007 and resource capacity of 0.342.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/0952813X.2022.2117421</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-813X
ispartof Journal of experimental & theoretical artificial intelligence, 2024-10, Vol.36 (7), p.985-1002
issn 0952-813X
1362-3079
language eng
recordid cdi_proquest_journals_3107869288
source Taylor and Francis Science and Technology Collection
subjects Algorithms
Application migration
cloud
Cloud computing
Containers
deep long short-term memory
Interoperability
Optimization
Portability
Predictions
Resource allocation
resource capacity
Virtual environments
title Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20enabled%20deep%20learning%20method%20in%20container-based%20architecture%20of%20hybrid%20cloud%20for%20portability%20and%20interoperability-based%20application%20migration&rft.jtitle=Journal%20of%20experimental%20&%20theoretical%20artificial%20intelligence&rft.au=Hiremath,%20Tej.%20C.&rft.date=2024-10-02&rft.volume=36&rft.issue=7&rft.spage=985&rft.epage=1002&rft.pages=985-1002&rft.issn=0952-813X&rft.eissn=1362-3079&rft_id=info:doi/10.1080/0952813X.2022.2117421&rft_dat=%3Cproquest_cross%3E3107869288%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3107869288&rft_id=info:pmid/&rfr_iscdi=true