Loading…
Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration
Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cl...
Saved in:
Published in: | Journal of experimental & theoretical artificial intelligence 2024-10, Vol.36 (7), p.985-1002 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53 |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53 |
container_end_page | 1002 |
container_issue | 7 |
container_start_page | 985 |
container_title | Journal of experimental & theoretical artificial intelligence |
container_volume | 36 |
creator | Hiremath, Tej. C. K. S., Rekha |
description | Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cloud with optimal resource allocation is still a challenging task. The application migration is employed to reduce the dilemma of resource allocation. Hence, this paper proposes a technique for portability and interoperability-based application migration in the cloud platform. The cloud simulation is done with the Physical Machine (PM), Virtual Machine (VM), and container. The interoperable application migration is provided using the newly devised Lion-based shuffled shepherd (Lion-SS) optimisation algorithm. The Lion-SS algorithm combines the shuffled shepherd optimisation algorithm (SSOA) and the Lion optimisation algorithm (LOA). The new objective function is devised based on predicted load, demand, transmission cost, and resource capacity. Besides, the prediction of the load is performed using Deep long short-term memory (Deep LSTM). The proposed technique obtained the minimal load of 0.007 and resource capacity of 0.342. |
doi_str_mv | 10.1080/0952813X.2022.2117421 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107869288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107869288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53</originalsourceid><addsrcrecordid>eNp9kdtq3DAQhkVpods0jxAQ5NobHdaWfJcSmgMEcpNA7sRYHmcVbMkdaymbR-nT1s5ubnM1w_DNP4efsTMp1lJYcSHqUlmpn9dKKLVWUpqNkl_YSupKFVqY-itbLUyxQN_Zj2l6FULIUsoV-_cw5jCEN8ghRY4Rmh5b3iKOvEegGOILHzBvU8tD5D7FDCEiFQ1MMwfktyGjzztCnjq-3TcUWu77tGt5l4iPiTI0oQ95zyEuGhkpjUjH4ofOOPbBH3YYwgu9Zz_Ztw76CU-P8YQ9Xf9-vLot7h9u7q5-3RdeVTYXtfWVqZoSvOlUrUttrdz4DWrVNl4blA3Ol1bWq7Lz0JbKCNgogcp0BgBKfcLOD7ojpT87nLJ7TTuK80inpTC2qpW1M1UeKE9pmgg7N1IYgPZOCrfY4D5scIsN7mjD3Hd56AtxfsgAfxP1rcuw7xN1BNGH9zGfSfwHa72TcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107869288</pqid></control><display><type>article</type><title>Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration</title><source>Taylor and Francis Science and Technology Collection</source><creator>Hiremath, Tej. C. ; K. S., Rekha</creator><creatorcontrib>Hiremath, Tej. C. ; K. S., Rekha</creatorcontrib><description>Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cloud with optimal resource allocation is still a challenging task. The application migration is employed to reduce the dilemma of resource allocation. Hence, this paper proposes a technique for portability and interoperability-based application migration in the cloud platform. The cloud simulation is done with the Physical Machine (PM), Virtual Machine (VM), and container. The interoperable application migration is provided using the newly devised Lion-based shuffled shepherd (Lion-SS) optimisation algorithm. The Lion-SS algorithm combines the shuffled shepherd optimisation algorithm (SSOA) and the Lion optimisation algorithm (LOA). The new objective function is devised based on predicted load, demand, transmission cost, and resource capacity. Besides, the prediction of the load is performed using Deep long short-term memory (Deep LSTM). The proposed technique obtained the minimal load of 0.007 and resource capacity of 0.342.</description><identifier>ISSN: 0952-813X</identifier><identifier>EISSN: 1362-3079</identifier><identifier>DOI: 10.1080/0952813X.2022.2117421</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algorithms ; Application migration ; cloud ; Cloud computing ; Containers ; deep long short-term memory ; Interoperability ; Optimization ; Portability ; Predictions ; Resource allocation ; resource capacity ; Virtual environments</subject><ispartof>Journal of experimental & theoretical artificial intelligence, 2024-10, Vol.36 (7), p.985-1002</ispartof><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53</citedby><cites>FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hiremath, Tej. C.</creatorcontrib><creatorcontrib>K. S., Rekha</creatorcontrib><title>Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration</title><title>Journal of experimental & theoretical artificial intelligence</title><description>Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cloud with optimal resource allocation is still a challenging task. The application migration is employed to reduce the dilemma of resource allocation. Hence, this paper proposes a technique for portability and interoperability-based application migration in the cloud platform. The cloud simulation is done with the Physical Machine (PM), Virtual Machine (VM), and container. The interoperable application migration is provided using the newly devised Lion-based shuffled shepherd (Lion-SS) optimisation algorithm. The Lion-SS algorithm combines the shuffled shepherd optimisation algorithm (SSOA) and the Lion optimisation algorithm (LOA). The new objective function is devised based on predicted load, demand, transmission cost, and resource capacity. Besides, the prediction of the load is performed using Deep long short-term memory (Deep LSTM). The proposed technique obtained the minimal load of 0.007 and resource capacity of 0.342.</description><subject>Algorithms</subject><subject>Application migration</subject><subject>cloud</subject><subject>Cloud computing</subject><subject>Containers</subject><subject>deep long short-term memory</subject><subject>Interoperability</subject><subject>Optimization</subject><subject>Portability</subject><subject>Predictions</subject><subject>Resource allocation</subject><subject>resource capacity</subject><subject>Virtual environments</subject><issn>0952-813X</issn><issn>1362-3079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kdtq3DAQhkVpods0jxAQ5NobHdaWfJcSmgMEcpNA7sRYHmcVbMkdaymbR-nT1s5ubnM1w_DNP4efsTMp1lJYcSHqUlmpn9dKKLVWUpqNkl_YSupKFVqY-itbLUyxQN_Zj2l6FULIUsoV-_cw5jCEN8ghRY4Rmh5b3iKOvEegGOILHzBvU8tD5D7FDCEiFQ1MMwfktyGjzztCnjq-3TcUWu77tGt5l4iPiTI0oQ95zyEuGhkpjUjH4ofOOPbBH3YYwgu9Zz_Ztw76CU-P8YQ9Xf9-vLot7h9u7q5-3RdeVTYXtfWVqZoSvOlUrUttrdz4DWrVNl4blA3Ol1bWq7Lz0JbKCNgogcp0BgBKfcLOD7ojpT87nLJ7TTuK80inpTC2qpW1M1UeKE9pmgg7N1IYgPZOCrfY4D5scIsN7mjD3Hd56AtxfsgAfxP1rcuw7xN1BNGH9zGfSfwHa72TcA</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Hiremath, Tej. C.</creator><creator>K. S., Rekha</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241002</creationdate><title>Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration</title><author>Hiremath, Tej. C. ; K. S., Rekha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Application migration</topic><topic>cloud</topic><topic>Cloud computing</topic><topic>Containers</topic><topic>deep long short-term memory</topic><topic>Interoperability</topic><topic>Optimization</topic><topic>Portability</topic><topic>Predictions</topic><topic>Resource allocation</topic><topic>resource capacity</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiremath, Tej. C.</creatorcontrib><creatorcontrib>K. S., Rekha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of experimental & theoretical artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiremath, Tej. C.</au><au>K. S., Rekha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration</atitle><jtitle>Journal of experimental & theoretical artificial intelligence</jtitle><date>2024-10-02</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>985</spage><epage>1002</epage><pages>985-1002</pages><issn>0952-813X</issn><eissn>1362-3079</eissn><abstract>Virtualisation is a major part of the cloud as it permits the deployment of several virtual servers over the same physical layer. Due to the adaption of cloud services, the count of the application running on repositories increases, resulting in overload. However, the application migration in the cloud with optimal resource allocation is still a challenging task. The application migration is employed to reduce the dilemma of resource allocation. Hence, this paper proposes a technique for portability and interoperability-based application migration in the cloud platform. The cloud simulation is done with the Physical Machine (PM), Virtual Machine (VM), and container. The interoperable application migration is provided using the newly devised Lion-based shuffled shepherd (Lion-SS) optimisation algorithm. The Lion-SS algorithm combines the shuffled shepherd optimisation algorithm (SSOA) and the Lion optimisation algorithm (LOA). The new objective function is devised based on predicted load, demand, transmission cost, and resource capacity. Besides, the prediction of the load is performed using Deep long short-term memory (Deep LSTM). The proposed technique obtained the minimal load of 0.007 and resource capacity of 0.342.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/0952813X.2022.2117421</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-813X |
ispartof | Journal of experimental & theoretical artificial intelligence, 2024-10, Vol.36 (7), p.985-1002 |
issn | 0952-813X 1362-3079 |
language | eng |
recordid | cdi_proquest_journals_3107869288 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms Application migration cloud Cloud computing Containers deep long short-term memory Interoperability Optimization Portability Predictions Resource allocation resource capacity Virtual environments |
title | Optimization enabled deep learning method in container-based architecture of hybrid cloud for portability and interoperability-based application migration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20enabled%20deep%20learning%20method%20in%20container-based%20architecture%20of%20hybrid%20cloud%20for%20portability%20and%20interoperability-based%20application%20migration&rft.jtitle=Journal%20of%20experimental%20&%20theoretical%20artificial%20intelligence&rft.au=Hiremath,%20Tej.%20C.&rft.date=2024-10-02&rft.volume=36&rft.issue=7&rft.spage=985&rft.epage=1002&rft.pages=985-1002&rft.issn=0952-813X&rft.eissn=1362-3079&rft_id=info:doi/10.1080/0952813X.2022.2117421&rft_dat=%3Cproquest_cross%3E3107869288%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-98c676b5ac7f293538814c4e32dbc37e1be51168c25fcad5270a420e27f7aaa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3107869288&rft_id=info:pmid/&rfr_iscdi=true |