Loading…

Variation inequalities for smartingales

A result by N.G. Makarov [Algebra i Analiz, 1989] states that for martingales \((M_n)\) on the torus we have the strict inequality \[ \liminf_{n\to\infty} \frac{M_n}{\sum_{k=1}^n |\Delta M_k|} > 0 \] on a set of Hausdorff dimension one, denoting by \(\Delta M_n\) the martingale differences \( \De...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Author: Passenbrunner, Markus
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Passenbrunner, Markus
description A result by N.G. Makarov [Algebra i Analiz, 1989] states that for martingales \((M_n)\) on the torus we have the strict inequality \[ \liminf_{n\to\infty} \frac{M_n}{\sum_{k=1}^n |\Delta M_k|} > 0 \] on a set of Hausdorff dimension one, denoting by \(\Delta M_n\) the martingale differences \( \Delta M_n = M_n - M_{n-1} \). We discuss an extension of this inequality to so-called smartingales on convex, compact subsets of \(\mathbb R^d\), which are piecewise polynomial (or spline) versions of martingales. As a tool we need and prove an estimate for smartingales in the spirit of the law of the iterated logarithm.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108437648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108437648</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084376483</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQD0ssykwsyczPU8jMSy0sTczJLMlMLVZIyy9SKM5NLCrJzEtPzEkt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDAwsTY3MzEwtj4lQBALpZMG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108437648</pqid></control><display><type>article</type><title>Variation inequalities for smartingales</title><source>Publicly Available Content Database</source><creator>Passenbrunner, Markus</creator><creatorcontrib>Passenbrunner, Markus</creatorcontrib><description>A result by N.G. Makarov [Algebra i Analiz, 1989] states that for martingales \((M_n)\) on the torus we have the strict inequality \[ \liminf_{n\to\infty} \frac{M_n}{\sum_{k=1}^n |\Delta M_k|} &gt; 0 \] on a set of Hausdorff dimension one, denoting by \(\Delta M_n\) the martingale differences \( \Delta M_n = M_n - M_{n-1} \). We discuss an extension of this inequality to so-called smartingales on convex, compact subsets of \(\mathbb R^d\), which are piecewise polynomial (or spline) versions of martingales. As a tool we need and prove an estimate for smartingales in the spirit of the law of the iterated logarithm.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Martingales ; Polynomials ; Set theory ; Toruses</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3108437648?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Passenbrunner, Markus</creatorcontrib><title>Variation inequalities for smartingales</title><title>arXiv.org</title><description>A result by N.G. Makarov [Algebra i Analiz, 1989] states that for martingales \((M_n)\) on the torus we have the strict inequality \[ \liminf_{n\to\infty} \frac{M_n}{\sum_{k=1}^n |\Delta M_k|} &gt; 0 \] on a set of Hausdorff dimension one, denoting by \(\Delta M_n\) the martingale differences \( \Delta M_n = M_n - M_{n-1} \). We discuss an extension of this inequality to so-called smartingales on convex, compact subsets of \(\mathbb R^d\), which are piecewise polynomial (or spline) versions of martingales. As a tool we need and prove an estimate for smartingales in the spirit of the law of the iterated logarithm.</description><subject>Martingales</subject><subject>Polynomials</subject><subject>Set theory</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQD0ssykwsyczPU8jMSy0sTczJLMlMLVZIyy9SKM5NLCrJzEtPzEkt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDAwsTY3MzEwtj4lQBALpZMG8</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Passenbrunner, Markus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240920</creationdate><title>Variation inequalities for smartingales</title><author>Passenbrunner, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084376483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Martingales</topic><topic>Polynomials</topic><topic>Set theory</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Passenbrunner, Markus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passenbrunner, Markus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Variation inequalities for smartingales</atitle><jtitle>arXiv.org</jtitle><date>2024-09-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A result by N.G. Makarov [Algebra i Analiz, 1989] states that for martingales \((M_n)\) on the torus we have the strict inequality \[ \liminf_{n\to\infty} \frac{M_n}{\sum_{k=1}^n |\Delta M_k|} &gt; 0 \] on a set of Hausdorff dimension one, denoting by \(\Delta M_n\) the martingale differences \( \Delta M_n = M_n - M_{n-1} \). We discuss an extension of this inequality to so-called smartingales on convex, compact subsets of \(\mathbb R^d\), which are piecewise polynomial (or spline) versions of martingales. As a tool we need and prove an estimate for smartingales in the spirit of the law of the iterated logarithm.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3108437648
source Publicly Available Content Database
subjects Martingales
Polynomials
Set theory
Toruses
title Variation inequalities for smartingales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Variation%20inequalities%20for%20smartingales&rft.jtitle=arXiv.org&rft.au=Passenbrunner,%20Markus&rft.date=2024-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108437648%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31084376483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108437648&rft_id=info:pmid/&rfr_iscdi=true