Loading…

Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization

A mechanistic model is developed to study the formation of 2,6-difluoropurine-9-THP from starting material 2,6-dichloropurine-9-THP. The 2,6-difluoropurine-9-THP product is an intermediate used in the synthesis of islatravir (MK-8591), a therapy for treatment of HIV. Kinetic parameters are estimated...

Full description

Saved in:
Bibliographic Details
Published in:Reaction chemistry & engineering 2024-09, Vol.9 (10), p.2669-2682
Main Authors: Moshiritabrizi, Iman, McMullen, Jonathan P., Wyvratt, Brian M., McAuley, Kimberley B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c148t-aef041479269a6d92c0e8a9b8c0c392ea2fd4444eff778814799e0a72ac6cbdb3
container_end_page 2682
container_issue 10
container_start_page 2669
container_title Reaction chemistry & engineering
container_volume 9
creator Moshiritabrizi, Iman
McMullen, Jonathan P.
Wyvratt, Brian M.
McAuley, Kimberley B.
description A mechanistic model is developed to study the formation of 2,6-difluoropurine-9-THP from starting material 2,6-dichloropurine-9-THP. The 2,6-difluoropurine-9-THP product is an intermediate used in the synthesis of islatravir (MK-8591), a therapy for treatment of HIV. Kinetic parameters are estimated from 26 batch reactor experiments. An error-in-variables-model (EVM) approach is used for parameter estimation to address uncertainty in initial concentrations of trimethylamine (TMA), a gaseous reagent. A parameter subset selection method is used to determine that 33 out of 39 model parameters should be estimated along with 26 uncertain initial concentrations. The remaining six parameters are kept at their initial values to prevent overfitting of available data. EVM parameter estimates are compared with estimates obtained using a traditional weighted-least-squares approach that neglects input uncertainties. The EVM estimates provide a better fit to the data and, as shown using cross-validation, improved accuracy for model predictions. The resulting model and EVM parameter values are used to find reactor conditions that maximize product yield while obeying constraints on temperature, the initial ratio of TMA to starting material, batch time, and the volume of solvent. An optimal yield of 92.04% is predicted, which is higher than the yield of 90.26% at the best experimental conditions in the data set. Contour plots are used to highlight the insensitivity of the optimal yield to batch time and solvent volume, indicating that a yield of 91.83% could be obtained using a 50% lower batch time and 33% less solvent.
doi_str_mv 10.1039/D4RE00210E
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108535890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108535890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-aef041479269a6d92c0e8a9b8c0c392ea2fd4444eff778814799e0a72ac6cbdb3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsGgvfoIFb2J0Npsmu0ep9Q8UFNFzmGwmZds0W3cTpV786m6poHOZGfjxeO8xdibgSoDU17fZywwgFTA7YKMUJirRSsnDf_cxG4ewBACRA0hVjNj3s3eGQuCrzn22VC-IN87z2g8LHoYq9NgZ4hvv6sH01nX8wyJf2Y56a_ja1dTabnHJN-hxTT15TqG3a6xsa_stxw7bbbAhHjX3hHsJt4mI_cLdc8qOGmwDjX_3CXu7m71OH5L50_3j9GaeGJGpPkFqIBNZodNcY17r1AAp1JUyYKROCdOmzuJQ0xSFUjtSE2CRoslNVVfyhJ3vdWOU9yGaLJdu8NFeKKUANZETpSFSF3vKeBeCp6bc-JjGb0sB5a7j8q9j-QNkOXGv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108535890</pqid></control><display><type>article</type><title>Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization</title><source>Royal Society of Chemistry</source><creator>Moshiritabrizi, Iman ; McMullen, Jonathan P. ; Wyvratt, Brian M. ; McAuley, Kimberley B.</creator><creatorcontrib>Moshiritabrizi, Iman ; McMullen, Jonathan P. ; Wyvratt, Brian M. ; McAuley, Kimberley B.</creatorcontrib><description>A mechanistic model is developed to study the formation of 2,6-difluoropurine-9-THP from starting material 2,6-dichloropurine-9-THP. The 2,6-difluoropurine-9-THP product is an intermediate used in the synthesis of islatravir (MK-8591), a therapy for treatment of HIV. Kinetic parameters are estimated from 26 batch reactor experiments. An error-in-variables-model (EVM) approach is used for parameter estimation to address uncertainty in initial concentrations of trimethylamine (TMA), a gaseous reagent. A parameter subset selection method is used to determine that 33 out of 39 model parameters should be estimated along with 26 uncertain initial concentrations. The remaining six parameters are kept at their initial values to prevent overfitting of available data. EVM parameter estimates are compared with estimates obtained using a traditional weighted-least-squares approach that neglects input uncertainties. The EVM estimates provide a better fit to the data and, as shown using cross-validation, improved accuracy for model predictions. The resulting model and EVM parameter values are used to find reactor conditions that maximize product yield while obeying constraints on temperature, the initial ratio of TMA to starting material, batch time, and the volume of solvent. An optimal yield of 92.04% is predicted, which is higher than the yield of 90.26% at the best experimental conditions in the data set. Contour plots are used to highlight the insensitivity of the optimal yield to batch time and solvent volume, indicating that a yield of 91.83% could be obtained using a 50% lower batch time and 33% less solvent.</description><identifier>ISSN: 2058-9883</identifier><identifier>EISSN: 2058-9883</identifier><identifier>DOI: 10.1039/D4RE00210E</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Estimates ; Parameter estimation ; Parameter uncertainty ; Predictions ; Reagents ; Solvents ; Trimethylamine</subject><ispartof>Reaction chemistry &amp; engineering, 2024-09, Vol.9 (10), p.2669-2682</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-aef041479269a6d92c0e8a9b8c0c392ea2fd4444eff778814799e0a72ac6cbdb3</cites><orcidid>0000-0001-5128-9906 ; 0000-0002-5201-0310 ; 0000-0001-5969-2396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Moshiritabrizi, Iman</creatorcontrib><creatorcontrib>McMullen, Jonathan P.</creatorcontrib><creatorcontrib>Wyvratt, Brian M.</creatorcontrib><creatorcontrib>McAuley, Kimberley B.</creatorcontrib><title>Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization</title><title>Reaction chemistry &amp; engineering</title><description>A mechanistic model is developed to study the formation of 2,6-difluoropurine-9-THP from starting material 2,6-dichloropurine-9-THP. The 2,6-difluoropurine-9-THP product is an intermediate used in the synthesis of islatravir (MK-8591), a therapy for treatment of HIV. Kinetic parameters are estimated from 26 batch reactor experiments. An error-in-variables-model (EVM) approach is used for parameter estimation to address uncertainty in initial concentrations of trimethylamine (TMA), a gaseous reagent. A parameter subset selection method is used to determine that 33 out of 39 model parameters should be estimated along with 26 uncertain initial concentrations. The remaining six parameters are kept at their initial values to prevent overfitting of available data. EVM parameter estimates are compared with estimates obtained using a traditional weighted-least-squares approach that neglects input uncertainties. The EVM estimates provide a better fit to the data and, as shown using cross-validation, improved accuracy for model predictions. The resulting model and EVM parameter values are used to find reactor conditions that maximize product yield while obeying constraints on temperature, the initial ratio of TMA to starting material, batch time, and the volume of solvent. An optimal yield of 92.04% is predicted, which is higher than the yield of 90.26% at the best experimental conditions in the data set. Contour plots are used to highlight the insensitivity of the optimal yield to batch time and solvent volume, indicating that a yield of 91.83% could be obtained using a 50% lower batch time and 33% less solvent.</description><subject>Estimates</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Predictions</subject><subject>Reagents</subject><subject>Solvents</subject><subject>Trimethylamine</subject><issn>2058-9883</issn><issn>2058-9883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsGgvfoIFb2J0Npsmu0ep9Q8UFNFzmGwmZds0W3cTpV786m6poHOZGfjxeO8xdibgSoDU17fZywwgFTA7YKMUJirRSsnDf_cxG4ewBACRA0hVjNj3s3eGQuCrzn22VC-IN87z2g8LHoYq9NgZ4hvv6sH01nX8wyJf2Y56a_ja1dTabnHJN-hxTT15TqG3a6xsa_stxw7bbbAhHjX3hHsJt4mI_cLdc8qOGmwDjX_3CXu7m71OH5L50_3j9GaeGJGpPkFqIBNZodNcY17r1AAp1JUyYKROCdOmzuJQ0xSFUjtSE2CRoslNVVfyhJ3vdWOU9yGaLJdu8NFeKKUANZETpSFSF3vKeBeCp6bc-JjGb0sB5a7j8q9j-QNkOXGv</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Moshiritabrizi, Iman</creator><creator>McMullen, Jonathan P.</creator><creator>Wyvratt, Brian M.</creator><creator>McAuley, Kimberley B.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5128-9906</orcidid><orcidid>https://orcid.org/0000-0002-5201-0310</orcidid><orcidid>https://orcid.org/0000-0001-5969-2396</orcidid></search><sort><creationdate>20240924</creationdate><title>Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization</title><author>Moshiritabrizi, Iman ; McMullen, Jonathan P. ; Wyvratt, Brian M. ; McAuley, Kimberley B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-aef041479269a6d92c0e8a9b8c0c392ea2fd4444eff778814799e0a72ac6cbdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Estimates</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Predictions</topic><topic>Reagents</topic><topic>Solvents</topic><topic>Trimethylamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moshiritabrizi, Iman</creatorcontrib><creatorcontrib>McMullen, Jonathan P.</creatorcontrib><creatorcontrib>Wyvratt, Brian M.</creatorcontrib><creatorcontrib>McAuley, Kimberley B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Reaction chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moshiritabrizi, Iman</au><au>McMullen, Jonathan P.</au><au>Wyvratt, Brian M.</au><au>McAuley, Kimberley B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization</atitle><jtitle>Reaction chemistry &amp; engineering</jtitle><date>2024-09-24</date><risdate>2024</risdate><volume>9</volume><issue>10</issue><spage>2669</spage><epage>2682</epage><pages>2669-2682</pages><issn>2058-9883</issn><eissn>2058-9883</eissn><abstract>A mechanistic model is developed to study the formation of 2,6-difluoropurine-9-THP from starting material 2,6-dichloropurine-9-THP. The 2,6-difluoropurine-9-THP product is an intermediate used in the synthesis of islatravir (MK-8591), a therapy for treatment of HIV. Kinetic parameters are estimated from 26 batch reactor experiments. An error-in-variables-model (EVM) approach is used for parameter estimation to address uncertainty in initial concentrations of trimethylamine (TMA), a gaseous reagent. A parameter subset selection method is used to determine that 33 out of 39 model parameters should be estimated along with 26 uncertain initial concentrations. The remaining six parameters are kept at their initial values to prevent overfitting of available data. EVM parameter estimates are compared with estimates obtained using a traditional weighted-least-squares approach that neglects input uncertainties. The EVM estimates provide a better fit to the data and, as shown using cross-validation, improved accuracy for model predictions. The resulting model and EVM parameter values are used to find reactor conditions that maximize product yield while obeying constraints on temperature, the initial ratio of TMA to starting material, batch time, and the volume of solvent. An optimal yield of 92.04% is predicted, which is higher than the yield of 90.26% at the best experimental conditions in the data set. Contour plots are used to highlight the insensitivity of the optimal yield to batch time and solvent volume, indicating that a yield of 91.83% could be obtained using a 50% lower batch time and 33% less solvent.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D4RE00210E</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5128-9906</orcidid><orcidid>https://orcid.org/0000-0002-5201-0310</orcidid><orcidid>https://orcid.org/0000-0001-5969-2396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-9883
ispartof Reaction chemistry & engineering, 2024-09, Vol.9 (10), p.2669-2682
issn 2058-9883
2058-9883
language eng
recordid cdi_proquest_journals_3108535890
source Royal Society of Chemistry
subjects Estimates
Parameter estimation
Parameter uncertainty
Predictions
Reagents
Solvents
Trimethylamine
title Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20knowledge%20for%20drug%20substance%20production%20via%20kinetic%20modeling,%20parameter%20estimability%20analysis%20and%20reaction%20optimization&rft.jtitle=Reaction%20chemistry%20&%20engineering&rft.au=Moshiritabrizi,%20Iman&rft.date=2024-09-24&rft.volume=9&rft.issue=10&rft.spage=2669&rft.epage=2682&rft.pages=2669-2682&rft.issn=2058-9883&rft.eissn=2058-9883&rft_id=info:doi/10.1039/D4RE00210E&rft_dat=%3Cproquest_cross%3E3108535890%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-aef041479269a6d92c0e8a9b8c0c392ea2fd4444eff778814799e0a72ac6cbdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108535890&rft_id=info:pmid/&rfr_iscdi=true