Loading…
Fast Virtual Gate Extraction For Silicon Quantum Dot Devices
Silicon quantum dot devices stand as promising candidates for large-scale quantum computing due to their extended coherence times, compact size, and recent experimental demonstrations of sizable qubit arrays. Despite the great potential, controlling these arrays remains a significant challenge. This...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Che, Shize Oh, Seong W Qin, Haoyun Liu, Yuhao Sigillito, Anthony Li, Gushu |
description | Silicon quantum dot devices stand as promising candidates for large-scale quantum computing due to their extended coherence times, compact size, and recent experimental demonstrations of sizable qubit arrays. Despite the great potential, controlling these arrays remains a significant challenge. This paper introduces a new virtual gate extraction method to quickly establish orthogonal control on the potentials for individual quantum dots. Leveraging insights from the device physics, the proposed approach significantly reduces the experimental overhead by focusing on crucial regions around charge state transition. Furthermore, by employing an efficient voltage sweeping method, we can efficiently pinpoint these charge state transition lines and filter out erroneous points. Experimental evaluation using real quantum dot chip datasets demonstrates a substantial 5.84x to 19.34x speedup over conventional methods, thereby showcasing promising prospects for accelerating the scaling of silicon spin qubit devices. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108867282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108867282</sourcerecordid><originalsourceid>FETCH-proquest_journals_31088672823</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcUssLlEIyywqKU3MUXBPLElVcK0oKUpMLsnMz1Nwyy9SCM7MyUwGsgNLE_NKSnMVXPJLFFxSyzKTU4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2NDAwgJoqYWRMXGqAPKWNv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108867282</pqid></control><display><type>article</type><title>Fast Virtual Gate Extraction For Silicon Quantum Dot Devices</title><source>Publicly Available Content (ProQuest)</source><creator>Che, Shize ; Oh, Seong W ; Qin, Haoyun ; Liu, Yuhao ; Sigillito, Anthony ; Li, Gushu</creator><creatorcontrib>Che, Shize ; Oh, Seong W ; Qin, Haoyun ; Liu, Yuhao ; Sigillito, Anthony ; Li, Gushu</creatorcontrib><description>Silicon quantum dot devices stand as promising candidates for large-scale quantum computing due to their extended coherence times, compact size, and recent experimental demonstrations of sizable qubit arrays. Despite the great potential, controlling these arrays remains a significant challenge. This paper introduces a new virtual gate extraction method to quickly establish orthogonal control on the potentials for individual quantum dots. Leveraging insights from the device physics, the proposed approach significantly reduces the experimental overhead by focusing on crucial regions around charge state transition. Furthermore, by employing an efficient voltage sweeping method, we can efficiently pinpoint these charge state transition lines and filter out erroneous points. Experimental evaluation using real quantum dot chip datasets demonstrates a substantial 5.84x to 19.34x speedup over conventional methods, thereby showcasing promising prospects for accelerating the scaling of silicon spin qubit devices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Silicon</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3108867282?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Che, Shize</creatorcontrib><creatorcontrib>Oh, Seong W</creatorcontrib><creatorcontrib>Qin, Haoyun</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Sigillito, Anthony</creatorcontrib><creatorcontrib>Li, Gushu</creatorcontrib><title>Fast Virtual Gate Extraction For Silicon Quantum Dot Devices</title><title>arXiv.org</title><description>Silicon quantum dot devices stand as promising candidates for large-scale quantum computing due to their extended coherence times, compact size, and recent experimental demonstrations of sizable qubit arrays. Despite the great potential, controlling these arrays remains a significant challenge. This paper introduces a new virtual gate extraction method to quickly establish orthogonal control on the potentials for individual quantum dots. Leveraging insights from the device physics, the proposed approach significantly reduces the experimental overhead by focusing on crucial regions around charge state transition. Furthermore, by employing an efficient voltage sweeping method, we can efficiently pinpoint these charge state transition lines and filter out erroneous points. Experimental evaluation using real quantum dot chip datasets demonstrates a substantial 5.84x to 19.34x speedup over conventional methods, thereby showcasing promising prospects for accelerating the scaling of silicon spin qubit devices.</description><subject>Arrays</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Silicon</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcUssLlEIyywqKU3MUXBPLElVcK0oKUpMLsnMz1Nwyy9SCM7MyUwGsgNLE_NKSnMVXPJLFFxSyzKTU4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2NDAwgJoqYWRMXGqAPKWNv8</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Che, Shize</creator><creator>Oh, Seong W</creator><creator>Qin, Haoyun</creator><creator>Liu, Yuhao</creator><creator>Sigillito, Anthony</creator><creator>Li, Gushu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240923</creationdate><title>Fast Virtual Gate Extraction For Silicon Quantum Dot Devices</title><author>Che, Shize ; Oh, Seong W ; Qin, Haoyun ; Liu, Yuhao ; Sigillito, Anthony ; Li, Gushu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31088672823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Che, Shize</creatorcontrib><creatorcontrib>Oh, Seong W</creatorcontrib><creatorcontrib>Qin, Haoyun</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Sigillito, Anthony</creatorcontrib><creatorcontrib>Li, Gushu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Shize</au><au>Oh, Seong W</au><au>Qin, Haoyun</au><au>Liu, Yuhao</au><au>Sigillito, Anthony</au><au>Li, Gushu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fast Virtual Gate Extraction For Silicon Quantum Dot Devices</atitle><jtitle>arXiv.org</jtitle><date>2024-09-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Silicon quantum dot devices stand as promising candidates for large-scale quantum computing due to their extended coherence times, compact size, and recent experimental demonstrations of sizable qubit arrays. Despite the great potential, controlling these arrays remains a significant challenge. This paper introduces a new virtual gate extraction method to quickly establish orthogonal control on the potentials for individual quantum dots. Leveraging insights from the device physics, the proposed approach significantly reduces the experimental overhead by focusing on crucial regions around charge state transition. Furthermore, by employing an efficient voltage sweeping method, we can efficiently pinpoint these charge state transition lines and filter out erroneous points. Experimental evaluation using real quantum dot chip datasets demonstrates a substantial 5.84x to 19.34x speedup over conventional methods, thereby showcasing promising prospects for accelerating the scaling of silicon spin qubit devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3108867282 |
source | Publicly Available Content (ProQuest) |
subjects | Arrays Quantum computing Quantum dots Qubits (quantum computing) Silicon |
title | Fast Virtual Gate Extraction For Silicon Quantum Dot Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fast%20Virtual%20Gate%20Extraction%20For%20Silicon%20Quantum%20Dot%20Devices&rft.jtitle=arXiv.org&rft.au=Che,%20Shize&rft.date=2024-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108867282%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31088672823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108867282&rft_id=info:pmid/&rfr_iscdi=true |