Loading…

CAS‐GAN: A Novel Generative Adversarial Network‐Based Architecture for Coronary Artery Segmentation

ABSTRACT Accurate and automated segmentation of x‐ray coronary angiography (XRCA) is crucial for both diagnosing and treating coronary artery diseases. Despite the outstanding results achieved by deep learning (DL)‐based methods in this area, this task remains challenging due to several factors such...

Full description

Saved in:
Bibliographic Details
Published in:International journal of imaging systems and technology 2024-09, Vol.34 (5), p.n/a
Main Authors: Hamdi, Rawaa, Kerkeni, Asma, Abdallah, Asma Ben, Bedoui, Mohamed Hedi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1879-75c4ebfed0b7143e5308858720a35be33bb9376e2b6423c2a5598d363122e93a3
container_end_page n/a
container_issue 5
container_start_page
container_title International journal of imaging systems and technology
container_volume 34
creator Hamdi, Rawaa
Kerkeni, Asma
Abdallah, Asma Ben
Bedoui, Mohamed Hedi
description ABSTRACT Accurate and automated segmentation of x‐ray coronary angiography (XRCA) is crucial for both diagnosing and treating coronary artery diseases. Despite the outstanding results achieved by deep learning (DL)‐based methods in this area, this task remains challenging due to several factors such as poor image quality, the presence of motion artifacts, and inherent variability in vessel structure sizes. To address this challenge, this paper introduces a novel GAN‐based architecture for coronary artery segmentation using XRCA images. This architecture includes a novel U‐Net variant with two types of self‐attention blocks in the generator segment. An auxiliary path connects the attention block and the prediction block to enhance feature generalization, improving vessel structure delineation, especially thin vessels in low‐contrast regions. In parallel, the discriminator network employs a residual CNN with similar attention blocks for balanced performance and improved predictive capabilities. With a streamlined 6.74 M parameters, the resulting architecture surpasses existing methods in efficiency. We assess its efficacy on three coronary artery datasets: our private “CORONAR,” and the public “DCA1” and “CHUAC” datasets. Empirical results showcase our model's superiority across these datasets, utilizing both original and preprocessed images. Notably, our proposed architecture achieves the highest F1‐score of 0.7972 for the CHUAC dataset, 0.8245 for the DCA1 dataset, and 0.8333 for the CORONAR dataset.
doi_str_mv 10.1002/ima.23159
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109648157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109648157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1879-75c4ebfed0b7143e5308858720a35be33bb9376e2b6423c2a5598d363122e93a3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EEqUw8AaWmBjS-k-c2GwhglKplKEwW05yKSlpXJy0VTcegWfkSTCEleV-Ot13d9KH0CUlI0oIG1drM2KcCnWEBpQoGfyUYzQgUqlAhSI-RWdtuyKEUkHEAC3TZPH18TlJ5jc4wXO7gxpPoAFnumoHOCl24FrjKlPjOXR76948fWtaKHDi8teqg7zbOsCldTi1zjbGHfykAx8LWK6h6fwl25yjk9LULVz85RC93N89pw_B7GkyTZNZkFMZqyAWeQhZCQXJYhpyEJxIKWTMiOEiA86zTPE4ApZFIeM5M0IoWfCIU8ZAccOH6Kq_u3H2fQttp1d26xr_UnOvIgolFbGnrnsqd7ZtHZR647w5d9CU6B-P2nf616Nnxz27r2o4_A_q6WPSb3wD0TJ1EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109648157</pqid></control><display><type>article</type><title>CAS‐GAN: A Novel Generative Adversarial Network‐Based Architecture for Coronary Artery Segmentation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hamdi, Rawaa ; Kerkeni, Asma ; Abdallah, Asma Ben ; Bedoui, Mohamed Hedi</creator><creatorcontrib>Hamdi, Rawaa ; Kerkeni, Asma ; Abdallah, Asma Ben ; Bedoui, Mohamed Hedi</creatorcontrib><description>ABSTRACT Accurate and automated segmentation of x‐ray coronary angiography (XRCA) is crucial for both diagnosing and treating coronary artery diseases. Despite the outstanding results achieved by deep learning (DL)‐based methods in this area, this task remains challenging due to several factors such as poor image quality, the presence of motion artifacts, and inherent variability in vessel structure sizes. To address this challenge, this paper introduces a novel GAN‐based architecture for coronary artery segmentation using XRCA images. This architecture includes a novel U‐Net variant with two types of self‐attention blocks in the generator segment. An auxiliary path connects the attention block and the prediction block to enhance feature generalization, improving vessel structure delineation, especially thin vessels in low‐contrast regions. In parallel, the discriminator network employs a residual CNN with similar attention blocks for balanced performance and improved predictive capabilities. With a streamlined 6.74 M parameters, the resulting architecture surpasses existing methods in efficiency. We assess its efficacy on three coronary artery datasets: our private “CORONAR,” and the public “DCA1” and “CHUAC” datasets. Empirical results showcase our model's superiority across these datasets, utilizing both original and preprocessed images. Notably, our proposed architecture achieves the highest F1‐score of 0.7972 for the CHUAC dataset, 0.8245 for the DCA1 dataset, and 0.8333 for the CORONAR dataset.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.23159</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Angiography ; attention mechanism ; convolutional neural networks ; Coronary vessels ; Datasets ; deep learning ; discriminator network ; Generative adversarial networks ; generator network ; Image contrast ; Image enhancement ; Image quality ; Image segmentation ; Machine learning ; Performance prediction ; residual block ; x‐ray angiograms</subject><ispartof>International journal of imaging systems and technology, 2024-09, Vol.34 (5), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1879-75c4ebfed0b7143e5308858720a35be33bb9376e2b6423c2a5598d363122e93a3</cites><orcidid>0000-0002-4973-3307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hamdi, Rawaa</creatorcontrib><creatorcontrib>Kerkeni, Asma</creatorcontrib><creatorcontrib>Abdallah, Asma Ben</creatorcontrib><creatorcontrib>Bedoui, Mohamed Hedi</creatorcontrib><title>CAS‐GAN: A Novel Generative Adversarial Network‐Based Architecture for Coronary Artery Segmentation</title><title>International journal of imaging systems and technology</title><description>ABSTRACT Accurate and automated segmentation of x‐ray coronary angiography (XRCA) is crucial for both diagnosing and treating coronary artery diseases. Despite the outstanding results achieved by deep learning (DL)‐based methods in this area, this task remains challenging due to several factors such as poor image quality, the presence of motion artifacts, and inherent variability in vessel structure sizes. To address this challenge, this paper introduces a novel GAN‐based architecture for coronary artery segmentation using XRCA images. This architecture includes a novel U‐Net variant with two types of self‐attention blocks in the generator segment. An auxiliary path connects the attention block and the prediction block to enhance feature generalization, improving vessel structure delineation, especially thin vessels in low‐contrast regions. In parallel, the discriminator network employs a residual CNN with similar attention blocks for balanced performance and improved predictive capabilities. With a streamlined 6.74 M parameters, the resulting architecture surpasses existing methods in efficiency. We assess its efficacy on three coronary artery datasets: our private “CORONAR,” and the public “DCA1” and “CHUAC” datasets. Empirical results showcase our model's superiority across these datasets, utilizing both original and preprocessed images. Notably, our proposed architecture achieves the highest F1‐score of 0.7972 for the CHUAC dataset, 0.8245 for the DCA1 dataset, and 0.8333 for the CORONAR dataset.</description><subject>Angiography</subject><subject>attention mechanism</subject><subject>convolutional neural networks</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>deep learning</subject><subject>discriminator network</subject><subject>Generative adversarial networks</subject><subject>generator network</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Performance prediction</subject><subject>residual block</subject><subject>x‐ray angiograms</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EEqUw8AaWmBjS-k-c2GwhglKplKEwW05yKSlpXJy0VTcegWfkSTCEleV-Ot13d9KH0CUlI0oIG1drM2KcCnWEBpQoGfyUYzQgUqlAhSI-RWdtuyKEUkHEAC3TZPH18TlJ5jc4wXO7gxpPoAFnumoHOCl24FrjKlPjOXR76948fWtaKHDi8teqg7zbOsCldTi1zjbGHfykAx8LWK6h6fwl25yjk9LULVz85RC93N89pw_B7GkyTZNZkFMZqyAWeQhZCQXJYhpyEJxIKWTMiOEiA86zTPE4ApZFIeM5M0IoWfCIU8ZAccOH6Kq_u3H2fQttp1d26xr_UnOvIgolFbGnrnsqd7ZtHZR647w5d9CU6B-P2nf616Nnxz27r2o4_A_q6WPSb3wD0TJ1EA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Hamdi, Rawaa</creator><creator>Kerkeni, Asma</creator><creator>Abdallah, Asma Ben</creator><creator>Bedoui, Mohamed Hedi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4973-3307</orcidid></search><sort><creationdate>202409</creationdate><title>CAS‐GAN: A Novel Generative Adversarial Network‐Based Architecture for Coronary Artery Segmentation</title><author>Hamdi, Rawaa ; Kerkeni, Asma ; Abdallah, Asma Ben ; Bedoui, Mohamed Hedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1879-75c4ebfed0b7143e5308858720a35be33bb9376e2b6423c2a5598d363122e93a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiography</topic><topic>attention mechanism</topic><topic>convolutional neural networks</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>deep learning</topic><topic>discriminator network</topic><topic>Generative adversarial networks</topic><topic>generator network</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Performance prediction</topic><topic>residual block</topic><topic>x‐ray angiograms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamdi, Rawaa</creatorcontrib><creatorcontrib>Kerkeni, Asma</creatorcontrib><creatorcontrib>Abdallah, Asma Ben</creatorcontrib><creatorcontrib>Bedoui, Mohamed Hedi</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamdi, Rawaa</au><au>Kerkeni, Asma</au><au>Abdallah, Asma Ben</au><au>Bedoui, Mohamed Hedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAS‐GAN: A Novel Generative Adversarial Network‐Based Architecture for Coronary Artery Segmentation</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><epage>n/a</epage><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>ABSTRACT Accurate and automated segmentation of x‐ray coronary angiography (XRCA) is crucial for both diagnosing and treating coronary artery diseases. Despite the outstanding results achieved by deep learning (DL)‐based methods in this area, this task remains challenging due to several factors such as poor image quality, the presence of motion artifacts, and inherent variability in vessel structure sizes. To address this challenge, this paper introduces a novel GAN‐based architecture for coronary artery segmentation using XRCA images. This architecture includes a novel U‐Net variant with two types of self‐attention blocks in the generator segment. An auxiliary path connects the attention block and the prediction block to enhance feature generalization, improving vessel structure delineation, especially thin vessels in low‐contrast regions. In parallel, the discriminator network employs a residual CNN with similar attention blocks for balanced performance and improved predictive capabilities. With a streamlined 6.74 M parameters, the resulting architecture surpasses existing methods in efficiency. We assess its efficacy on three coronary artery datasets: our private “CORONAR,” and the public “DCA1” and “CHUAC” datasets. Empirical results showcase our model's superiority across these datasets, utilizing both original and preprocessed images. Notably, our proposed architecture achieves the highest F1‐score of 0.7972 for the CHUAC dataset, 0.8245 for the DCA1 dataset, and 0.8333 for the CORONAR dataset.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.23159</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4973-3307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2024-09, Vol.34 (5), p.n/a
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_3109648157
source Wiley-Blackwell Read & Publish Collection
subjects Angiography
attention mechanism
convolutional neural networks
Coronary vessels
Datasets
deep learning
discriminator network
Generative adversarial networks
generator network
Image contrast
Image enhancement
Image quality
Image segmentation
Machine learning
Performance prediction
residual block
x‐ray angiograms
title CAS‐GAN: A Novel Generative Adversarial Network‐Based Architecture for Coronary Artery Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAS%E2%80%90GAN:%20A%20Novel%20Generative%20Adversarial%20Network%E2%80%90Based%20Architecture%20for%20Coronary%20Artery%20Segmentation&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Hamdi,%20Rawaa&rft.date=2024-09&rft.volume=34&rft.issue=5&rft.epage=n/a&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.23159&rft_dat=%3Cproquest_cross%3E3109648157%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1879-75c4ebfed0b7143e5308858720a35be33bb9376e2b6423c2a5598d363122e93a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3109648157&rft_id=info:pmid/&rfr_iscdi=true