Loading…
Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm
ABSTRACT Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While r...
Saved in:
Published in: | International journal of imaging systems and technology 2024-09, Vol.34 (5), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3 |
container_end_page | n/a |
container_issue | 5 |
container_start_page | |
container_title | International journal of imaging systems and technology |
container_volume | 34 |
creator | Roy, Bijoyeta Gupta, Mousumi Goswami, Bidyut Krishna |
description | ABSTRACT
Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U‐Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick‐QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities. |
doi_str_mv | 10.1002/ima.23179 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109648629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109648629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1naaHx-rCtpKBSSg6jHaJE6a4tjFdqjK0-NQrlx2NaNvdqVB6JaSESWEjZsWRiykCT9DA0p4GvTjHA1IynnAJ1Fyia6s3RFCaUSiAVKv4kvLzjVaNd-NqvFMS63worFO78FtvaqPeC5BlZ0Eg99E3QrloA_gte0ToPCDsqLNpcDPwh20-cCbxm3xBpwwditKPJW1Nt5qr9FFBdKKm789ROvHh_fZIli9zJez6SooaJrwYJKHtCpiKvIESpKUIoScsZTwPBasYlB4h4QRQJmWPGV5xXMKCQNeAIuiqAiH6O50d2_0Zyesy3a6M8q_zELfSDxJY8Y9dX-iCqOtNaLK9sYXaI4ZJVlfZ-ZV9lunZ8cn9tBIcfwfzJZP01PiB-tQeW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109648629</pqid></control><display><type>article</type><title>Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Roy, Bijoyeta ; Gupta, Mousumi ; Goswami, Bidyut Krishna</creator><creatorcontrib>Roy, Bijoyeta ; Gupta, Mousumi ; Goswami, Bidyut Krishna</creatorcontrib><description>ABSTRACT
Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U‐Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick‐QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.23179</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Abnormalities ; Algorithms ; Artificial neural networks ; Colon ; convolutional neural network ; Datasets ; Effectiveness ; ensemble ; gland ; Histology ; histopathology ; Image segmentation ; Intestine ; Machine learning ; segmentation ; Visual tasks</subject><ispartof>International journal of imaging systems and technology, 2024-09, Vol.34 (5), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3</cites><orcidid>0000-0003-1339-8516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roy, Bijoyeta</creatorcontrib><creatorcontrib>Gupta, Mousumi</creatorcontrib><creatorcontrib>Goswami, Bidyut Krishna</creatorcontrib><title>Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm</title><title>International journal of imaging systems and technology</title><description>ABSTRACT
Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U‐Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick‐QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Colon</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Effectiveness</subject><subject>ensemble</subject><subject>gland</subject><subject>Histology</subject><subject>histopathology</subject><subject>Image segmentation</subject><subject>Intestine</subject><subject>Machine learning</subject><subject>segmentation</subject><subject>Visual tasks</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1naaHx-rCtpKBSSg6jHaJE6a4tjFdqjK0-NQrlx2NaNvdqVB6JaSESWEjZsWRiykCT9DA0p4GvTjHA1IynnAJ1Fyia6s3RFCaUSiAVKv4kvLzjVaNd-NqvFMS63worFO78FtvaqPeC5BlZ0Eg99E3QrloA_gte0ToPCDsqLNpcDPwh20-cCbxm3xBpwwditKPJW1Nt5qr9FFBdKKm789ROvHh_fZIli9zJez6SooaJrwYJKHtCpiKvIESpKUIoScsZTwPBasYlB4h4QRQJmWPGV5xXMKCQNeAIuiqAiH6O50d2_0Zyesy3a6M8q_zELfSDxJY8Y9dX-iCqOtNaLK9sYXaI4ZJVlfZ-ZV9lunZ8cn9tBIcfwfzJZP01PiB-tQeW8</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Roy, Bijoyeta</creator><creator>Gupta, Mousumi</creator><creator>Goswami, Bidyut Krishna</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1339-8516</orcidid></search><sort><creationdate>202409</creationdate><title>Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm</title><author>Roy, Bijoyeta ; Gupta, Mousumi ; Goswami, Bidyut Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Colon</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Effectiveness</topic><topic>ensemble</topic><topic>gland</topic><topic>Histology</topic><topic>histopathology</topic><topic>Image segmentation</topic><topic>Intestine</topic><topic>Machine learning</topic><topic>segmentation</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Bijoyeta</creatorcontrib><creatorcontrib>Gupta, Mousumi</creatorcontrib><creatorcontrib>Goswami, Bidyut Krishna</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Bijoyeta</au><au>Gupta, Mousumi</au><au>Goswami, Bidyut Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><epage>n/a</epage><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>ABSTRACT
Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U‐Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick‐QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ima.23179</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1339-8516</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-9457 |
ispartof | International journal of imaging systems and technology, 2024-09, Vol.34 (5), p.n/a |
issn | 0899-9457 1098-1098 |
language | eng |
recordid | cdi_proquest_journals_3109648629 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Abnormalities Algorithms Artificial neural networks Colon convolutional neural network Datasets Effectiveness ensemble gland Histology histopathology Image segmentation Intestine Machine learning segmentation Visual tasks |
title | Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revolutionizing%20Colon%20Histopathology%20Glandular%20Segmentation%20Using%20an%20Ensemble%20Network%20With%20Watershed%20Algorithm&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Roy,%20Bijoyeta&rft.date=2024-09&rft.volume=34&rft.issue=5&rft.epage=n/a&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.23179&rft_dat=%3Cproquest_cross%3E3109648629%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3109648629&rft_id=info:pmid/&rfr_iscdi=true |