Loading…

Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm

ABSTRACT Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While r...

Full description

Saved in:
Bibliographic Details
Published in:International journal of imaging systems and technology 2024-09, Vol.34 (5), p.n/a
Main Authors: Roy, Bijoyeta, Gupta, Mousumi, Goswami, Bidyut Krishna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3
container_end_page n/a
container_issue 5
container_start_page
container_title International journal of imaging systems and technology
container_volume 34
creator Roy, Bijoyeta
Gupta, Mousumi
Goswami, Bidyut Krishna
description ABSTRACT Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U‐Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick‐QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.
doi_str_mv 10.1002/ima.23179
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109648629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109648629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1naaHx-rCtpKBSSg6jHaJE6a4tjFdqjK0-NQrlx2NaNvdqVB6JaSESWEjZsWRiykCT9DA0p4GvTjHA1IynnAJ1Fyia6s3RFCaUSiAVKv4kvLzjVaNd-NqvFMS63worFO78FtvaqPeC5BlZ0Eg99E3QrloA_gte0ToPCDsqLNpcDPwh20-cCbxm3xBpwwditKPJW1Nt5qr9FFBdKKm789ROvHh_fZIli9zJez6SooaJrwYJKHtCpiKvIESpKUIoScsZTwPBasYlB4h4QRQJmWPGV5xXMKCQNeAIuiqAiH6O50d2_0Zyesy3a6M8q_zELfSDxJY8Y9dX-iCqOtNaLK9sYXaI4ZJVlfZ-ZV9lunZ8cn9tBIcfwfzJZP01PiB-tQeW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109648629</pqid></control><display><type>article</type><title>Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Roy, Bijoyeta ; Gupta, Mousumi ; Goswami, Bidyut Krishna</creator><creatorcontrib>Roy, Bijoyeta ; Gupta, Mousumi ; Goswami, Bidyut Krishna</creatorcontrib><description>ABSTRACT Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U‐Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick‐QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.23179</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Abnormalities ; Algorithms ; Artificial neural networks ; Colon ; convolutional neural network ; Datasets ; Effectiveness ; ensemble ; gland ; Histology ; histopathology ; Image segmentation ; Intestine ; Machine learning ; segmentation ; Visual tasks</subject><ispartof>International journal of imaging systems and technology, 2024-09, Vol.34 (5), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3</cites><orcidid>0000-0003-1339-8516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roy, Bijoyeta</creatorcontrib><creatorcontrib>Gupta, Mousumi</creatorcontrib><creatorcontrib>Goswami, Bidyut Krishna</creatorcontrib><title>Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm</title><title>International journal of imaging systems and technology</title><description>ABSTRACT Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U‐Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick‐QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Colon</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Effectiveness</subject><subject>ensemble</subject><subject>gland</subject><subject>Histology</subject><subject>histopathology</subject><subject>Image segmentation</subject><subject>Intestine</subject><subject>Machine learning</subject><subject>segmentation</subject><subject>Visual tasks</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1naaHx-rCtpKBSSg6jHaJE6a4tjFdqjK0-NQrlx2NaNvdqVB6JaSESWEjZsWRiykCT9DA0p4GvTjHA1IynnAJ1Fyia6s3RFCaUSiAVKv4kvLzjVaNd-NqvFMS63worFO78FtvaqPeC5BlZ0Eg99E3QrloA_gte0ToPCDsqLNpcDPwh20-cCbxm3xBpwwditKPJW1Nt5qr9FFBdKKm789ROvHh_fZIli9zJez6SooaJrwYJKHtCpiKvIESpKUIoScsZTwPBasYlB4h4QRQJmWPGV5xXMKCQNeAIuiqAiH6O50d2_0Zyesy3a6M8q_zELfSDxJY8Y9dX-iCqOtNaLK9sYXaI4ZJVlfZ-ZV9lunZ8cn9tBIcfwfzJZP01PiB-tQeW8</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Roy, Bijoyeta</creator><creator>Gupta, Mousumi</creator><creator>Goswami, Bidyut Krishna</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1339-8516</orcidid></search><sort><creationdate>202409</creationdate><title>Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm</title><author>Roy, Bijoyeta ; Gupta, Mousumi ; Goswami, Bidyut Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Colon</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Effectiveness</topic><topic>ensemble</topic><topic>gland</topic><topic>Histology</topic><topic>histopathology</topic><topic>Image segmentation</topic><topic>Intestine</topic><topic>Machine learning</topic><topic>segmentation</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Bijoyeta</creatorcontrib><creatorcontrib>Gupta, Mousumi</creatorcontrib><creatorcontrib>Goswami, Bidyut Krishna</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Bijoyeta</au><au>Gupta, Mousumi</au><au>Goswami, Bidyut Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><epage>n/a</epage><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>ABSTRACT Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U‐Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick‐QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.23179</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1339-8516</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2024-09, Vol.34 (5), p.n/a
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_3109648629
source Wiley-Blackwell Read & Publish Collection
subjects Abnormalities
Algorithms
Artificial neural networks
Colon
convolutional neural network
Datasets
Effectiveness
ensemble
gland
Histology
histopathology
Image segmentation
Intestine
Machine learning
segmentation
Visual tasks
title Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revolutionizing%20Colon%20Histopathology%20Glandular%20Segmentation%20Using%20an%20Ensemble%20Network%20With%20Watershed%20Algorithm&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Roy,%20Bijoyeta&rft.date=2024-09&rft.volume=34&rft.issue=5&rft.epage=n/a&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.23179&rft_dat=%3Cproquest_cross%3E3109648629%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1879-4b31fc61eb7ad07de3ab22809b6e2f2acde3035aad8d982bf9b1a72a9ca2555c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3109648629&rft_id=info:pmid/&rfr_iscdi=true