Loading…

Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction

The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this wor...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-09, Vol.34 (36), p.n/a
Main Authors: Fujita, Ryuji, Gurung, Gautam, Mawass, Mohamad‐Assaad, Smekhova, Alevtina, Kronast, Florian, Toh, Alexander Kang‐Jun, Soumyanarayanan, Anjan, Ho, Pin, Singh, Angadjit, Heppell, Emily, Backes, Dirk, Maccherozzi, Francesco, Watanabe, Kenji, Taniguchi, Takashi, Mayoh, Daniel A., Balakrishnan, Geetha, van der Laan, Gerrit, Hesjedal, Thorsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced functional materials
container_volume 34
creator Fujita, Ryuji
Gurung, Gautam
Mawass, Mohamad‐Assaad
Smekhova, Alevtina
Kronast, Florian
Toh, Alexander Kang‐Jun
Soumyanarayanan, Anjan
Ho, Pin
Singh, Angadjit
Heppell, Emily
Backes, Dirk
Maccherozzi, Francesco
Watanabe, Kenji
Taniguchi, Takashi
Mayoh, Daniel A.
Balakrishnan, Geetha
van der Laan, Gerrit
Hesjedal, Thorsten
description The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions. This study focuses on the captivating interplay between the ferromagnetic Fe3GeTe2 and the piezoelectric α‐In2Se3, both 2D van der Waals (vdW) materials. Strained heterojunctions exhibit several compelling transformations: increased domain density, reduced Curie temperature, and emergent magnetostrictive ferromagnetic domains. Using α‐In2Se3 is a versatile approach to strain‐tune vdW materials, including graphite and Te based vdW chalcogenides.
doi_str_mv 10.1002/adfm.202400552
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109912307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109912307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhy0EEqWwMkdiTrmzk7gZq0JppRYGQLBZ18RGqRqn2A6oG4_AM_IkpCqCken-6PvdSR9j5wgDBOCXVJp6wIEnAGnKD1gPM8xiAXx4-Nvj8zE78X4FgFKKpMdu74Ojyn59fC6asl1T0GU00c41Nb1YHSpfRxQistHMBldZXxXRWzeV2kVPRGsfTXXQrlm1tghVY0_Zkem2-uyn9tnj5PphPI3ndzez8WgeFwI5jzkJnQ7TRAqTkcFhQQhSZlkqDBalQLPEBHKNkhKOmBnShZBkEgFJjksyos8u9nc3rnlttQ9q1bTOdi-VQMhz5AJkRw32VOEa7502auOqmtxWIaidM7Vzpn6ddYF8H3iv1nr7D61GV5PFX_YblgFw1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109912307</pqid></control><display><type>article</type><title>Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fujita, Ryuji ; Gurung, Gautam ; Mawass, Mohamad‐Assaad ; Smekhova, Alevtina ; Kronast, Florian ; Toh, Alexander Kang‐Jun ; Soumyanarayanan, Anjan ; Ho, Pin ; Singh, Angadjit ; Heppell, Emily ; Backes, Dirk ; Maccherozzi, Francesco ; Watanabe, Kenji ; Taniguchi, Takashi ; Mayoh, Daniel A. ; Balakrishnan, Geetha ; van der Laan, Gerrit ; Hesjedal, Thorsten</creator><creatorcontrib>Fujita, Ryuji ; Gurung, Gautam ; Mawass, Mohamad‐Assaad ; Smekhova, Alevtina ; Kronast, Florian ; Toh, Alexander Kang‐Jun ; Soumyanarayanan, Anjan ; Ho, Pin ; Singh, Angadjit ; Heppell, Emily ; Backes, Dirk ; Maccherozzi, Francesco ; Watanabe, Kenji ; Taniguchi, Takashi ; Mayoh, Daniel A. ; Balakrishnan, Geetha ; van der Laan, Gerrit ; Hesjedal, Thorsten</creatorcontrib><description>The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions. This study focuses on the captivating interplay between the ferromagnetic Fe3GeTe2 and the piezoelectric α‐In2Se3, both 2D van der Waals (vdW) materials. Strained heterojunctions exhibit several compelling transformations: increased domain density, reduced Curie temperature, and emergent magnetostrictive ferromagnetic domains. Using α‐In2Se3 is a versatile approach to strain‐tune vdW materials, including graphite and Te based vdW chalcogenides.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202400552</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Boron nitride ; Coercivity ; Density functional theory ; Domain walls ; Exfoliation corrosion ; Ferromagnetism ; Heterojunctions ; Heterostructures ; Magnetic anisotropy ; Magnetic domains ; magnetic materials ; Magnetic properties ; Magnetostriction ; piezoelectric materials ; Piezoelectricity ; Spin dynamics ; Thin films ; Transition temperature ; Two dimensional materials ; van der Waals materials</subject><ispartof>Advanced functional materials, 2024-09, Vol.34 (36), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3</cites><orcidid>0000-0001-7947-3692 ; 0000-0001-6048-480X ; 0000-0001-6852-2495 ; 0000-0001-8557-5812 ; 0000-0002-2399-0823 ; 0000-0003-4922-4956 ; 0000-0002-6470-2920 ; 0000-0002-5890-1149 ; 0000-0003-2680-6005 ; 0000-0002-3977-4623 ; 0000-0003-4099-2182 ; 0000-0003-3701-8119 ; 0000-0002-7020-3263 ; 0000-0002-1467-3105 ; 0000-0003-0946-2909 ; 0000-0001-7706-6276 ; 0000-0002-1019-3323 ; 0000-0003-4074-2319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Fujita, Ryuji</creatorcontrib><creatorcontrib>Gurung, Gautam</creatorcontrib><creatorcontrib>Mawass, Mohamad‐Assaad</creatorcontrib><creatorcontrib>Smekhova, Alevtina</creatorcontrib><creatorcontrib>Kronast, Florian</creatorcontrib><creatorcontrib>Toh, Alexander Kang‐Jun</creatorcontrib><creatorcontrib>Soumyanarayanan, Anjan</creatorcontrib><creatorcontrib>Ho, Pin</creatorcontrib><creatorcontrib>Singh, Angadjit</creatorcontrib><creatorcontrib>Heppell, Emily</creatorcontrib><creatorcontrib>Backes, Dirk</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Mayoh, Daniel A.</creatorcontrib><creatorcontrib>Balakrishnan, Geetha</creatorcontrib><creatorcontrib>van der Laan, Gerrit</creatorcontrib><creatorcontrib>Hesjedal, Thorsten</creatorcontrib><title>Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction</title><title>Advanced functional materials</title><description>The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions. This study focuses on the captivating interplay between the ferromagnetic Fe3GeTe2 and the piezoelectric α‐In2Se3, both 2D van der Waals (vdW) materials. Strained heterojunctions exhibit several compelling transformations: increased domain density, reduced Curie temperature, and emergent magnetostrictive ferromagnetic domains. Using α‐In2Se3 is a versatile approach to strain‐tune vdW materials, including graphite and Te based vdW chalcogenides.</description><subject>2D materials</subject><subject>Boron nitride</subject><subject>Coercivity</subject><subject>Density functional theory</subject><subject>Domain walls</subject><subject>Exfoliation corrosion</subject><subject>Ferromagnetism</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetostriction</subject><subject>piezoelectric materials</subject><subject>Piezoelectricity</subject><subject>Spin dynamics</subject><subject>Thin films</subject><subject>Transition temperature</subject><subject>Two dimensional materials</subject><subject>van der Waals materials</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL9OwzAQhy0EEqWwMkdiTrmzk7gZq0JppRYGQLBZ18RGqRqn2A6oG4_AM_IkpCqCken-6PvdSR9j5wgDBOCXVJp6wIEnAGnKD1gPM8xiAXx4-Nvj8zE78X4FgFKKpMdu74Ojyn59fC6asl1T0GU00c41Nb1YHSpfRxQistHMBldZXxXRWzeV2kVPRGsfTXXQrlm1tghVY0_Zkem2-uyn9tnj5PphPI3ndzez8WgeFwI5jzkJnQ7TRAqTkcFhQQhSZlkqDBalQLPEBHKNkhKOmBnShZBkEgFJjksyos8u9nc3rnlttQ9q1bTOdi-VQMhz5AJkRw32VOEa7502auOqmtxWIaidM7Vzpn6ddYF8H3iv1nr7D61GV5PFX_YblgFw1Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fujita, Ryuji</creator><creator>Gurung, Gautam</creator><creator>Mawass, Mohamad‐Assaad</creator><creator>Smekhova, Alevtina</creator><creator>Kronast, Florian</creator><creator>Toh, Alexander Kang‐Jun</creator><creator>Soumyanarayanan, Anjan</creator><creator>Ho, Pin</creator><creator>Singh, Angadjit</creator><creator>Heppell, Emily</creator><creator>Backes, Dirk</creator><creator>Maccherozzi, Francesco</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Mayoh, Daniel A.</creator><creator>Balakrishnan, Geetha</creator><creator>van der Laan, Gerrit</creator><creator>Hesjedal, Thorsten</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7947-3692</orcidid><orcidid>https://orcid.org/0000-0001-6048-480X</orcidid><orcidid>https://orcid.org/0000-0001-6852-2495</orcidid><orcidid>https://orcid.org/0000-0001-8557-5812</orcidid><orcidid>https://orcid.org/0000-0002-2399-0823</orcidid><orcidid>https://orcid.org/0000-0003-4922-4956</orcidid><orcidid>https://orcid.org/0000-0002-6470-2920</orcidid><orcidid>https://orcid.org/0000-0002-5890-1149</orcidid><orcidid>https://orcid.org/0000-0003-2680-6005</orcidid><orcidid>https://orcid.org/0000-0002-3977-4623</orcidid><orcidid>https://orcid.org/0000-0003-4099-2182</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-7020-3263</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-0946-2909</orcidid><orcidid>https://orcid.org/0000-0001-7706-6276</orcidid><orcidid>https://orcid.org/0000-0002-1019-3323</orcidid><orcidid>https://orcid.org/0000-0003-4074-2319</orcidid></search><sort><creationdate>20240901</creationdate><title>Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction</title><author>Fujita, Ryuji ; Gurung, Gautam ; Mawass, Mohamad‐Assaad ; Smekhova, Alevtina ; Kronast, Florian ; Toh, Alexander Kang‐Jun ; Soumyanarayanan, Anjan ; Ho, Pin ; Singh, Angadjit ; Heppell, Emily ; Backes, Dirk ; Maccherozzi, Francesco ; Watanabe, Kenji ; Taniguchi, Takashi ; Mayoh, Daniel A. ; Balakrishnan, Geetha ; van der Laan, Gerrit ; Hesjedal, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Boron nitride</topic><topic>Coercivity</topic><topic>Density functional theory</topic><topic>Domain walls</topic><topic>Exfoliation corrosion</topic><topic>Ferromagnetism</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetostriction</topic><topic>piezoelectric materials</topic><topic>Piezoelectricity</topic><topic>Spin dynamics</topic><topic>Thin films</topic><topic>Transition temperature</topic><topic>Two dimensional materials</topic><topic>van der Waals materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujita, Ryuji</creatorcontrib><creatorcontrib>Gurung, Gautam</creatorcontrib><creatorcontrib>Mawass, Mohamad‐Assaad</creatorcontrib><creatorcontrib>Smekhova, Alevtina</creatorcontrib><creatorcontrib>Kronast, Florian</creatorcontrib><creatorcontrib>Toh, Alexander Kang‐Jun</creatorcontrib><creatorcontrib>Soumyanarayanan, Anjan</creatorcontrib><creatorcontrib>Ho, Pin</creatorcontrib><creatorcontrib>Singh, Angadjit</creatorcontrib><creatorcontrib>Heppell, Emily</creatorcontrib><creatorcontrib>Backes, Dirk</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Mayoh, Daniel A.</creatorcontrib><creatorcontrib>Balakrishnan, Geetha</creatorcontrib><creatorcontrib>van der Laan, Gerrit</creatorcontrib><creatorcontrib>Hesjedal, Thorsten</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujita, Ryuji</au><au>Gurung, Gautam</au><au>Mawass, Mohamad‐Assaad</au><au>Smekhova, Alevtina</au><au>Kronast, Florian</au><au>Toh, Alexander Kang‐Jun</au><au>Soumyanarayanan, Anjan</au><au>Ho, Pin</au><au>Singh, Angadjit</au><au>Heppell, Emily</au><au>Backes, Dirk</au><au>Maccherozzi, Francesco</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Mayoh, Daniel A.</au><au>Balakrishnan, Geetha</au><au>van der Laan, Gerrit</au><au>Hesjedal, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions. This study focuses on the captivating interplay between the ferromagnetic Fe3GeTe2 and the piezoelectric α‐In2Se3, both 2D van der Waals (vdW) materials. Strained heterojunctions exhibit several compelling transformations: increased domain density, reduced Curie temperature, and emergent magnetostrictive ferromagnetic domains. Using α‐In2Se3 is a versatile approach to strain‐tune vdW materials, including graphite and Te based vdW chalcogenides.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202400552</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7947-3692</orcidid><orcidid>https://orcid.org/0000-0001-6048-480X</orcidid><orcidid>https://orcid.org/0000-0001-6852-2495</orcidid><orcidid>https://orcid.org/0000-0001-8557-5812</orcidid><orcidid>https://orcid.org/0000-0002-2399-0823</orcidid><orcidid>https://orcid.org/0000-0003-4922-4956</orcidid><orcidid>https://orcid.org/0000-0002-6470-2920</orcidid><orcidid>https://orcid.org/0000-0002-5890-1149</orcidid><orcidid>https://orcid.org/0000-0003-2680-6005</orcidid><orcidid>https://orcid.org/0000-0002-3977-4623</orcidid><orcidid>https://orcid.org/0000-0003-4099-2182</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-7020-3263</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-0946-2909</orcidid><orcidid>https://orcid.org/0000-0001-7706-6276</orcidid><orcidid>https://orcid.org/0000-0002-1019-3323</orcidid><orcidid>https://orcid.org/0000-0003-4074-2319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-09, Vol.34 (36), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3109912307
source Wiley-Blackwell Read & Publish Collection
subjects 2D materials
Boron nitride
Coercivity
Density functional theory
Domain walls
Exfoliation corrosion
Ferromagnetism
Heterojunctions
Heterostructures
Magnetic anisotropy
Magnetic domains
magnetic materials
Magnetic properties
Magnetostriction
piezoelectric materials
Piezoelectricity
Spin dynamics
Thin films
Transition temperature
Two dimensional materials
van der Waals materials
title Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%E2%80%90Modulated%20Ferromagnetism%20at%20an%20Intrinsic%20van%20der%20Waals%20Heterojunction&rft.jtitle=Advanced%20functional%20materials&rft.au=Fujita,%20Ryuji&rft.date=2024-09-01&rft.volume=34&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202400552&rft_dat=%3Cproquest_cross%3E3109912307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3109912307&rft_id=info:pmid/&rfr_iscdi=true