Loading…
Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction
The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this wor...
Saved in:
Published in: | Advanced functional materials 2024-09, Vol.34 (36), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3 |
container_end_page | n/a |
container_issue | 36 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Fujita, Ryuji Gurung, Gautam Mawass, Mohamad‐Assaad Smekhova, Alevtina Kronast, Florian Toh, Alexander Kang‐Jun Soumyanarayanan, Anjan Ho, Pin Singh, Angadjit Heppell, Emily Backes, Dirk Maccherozzi, Francesco Watanabe, Kenji Taniguchi, Takashi Mayoh, Daniel A. Balakrishnan, Geetha van der Laan, Gerrit Hesjedal, Thorsten |
description | The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions.
This study focuses on the captivating interplay between the ferromagnetic Fe3GeTe2 and the piezoelectric α‐In2Se3, both 2D van der Waals (vdW) materials. Strained heterojunctions exhibit several compelling transformations: increased domain density, reduced Curie temperature, and emergent magnetostrictive ferromagnetic domains. Using α‐In2Se3 is a versatile approach to strain‐tune vdW materials, including graphite and Te based vdW chalcogenides. |
doi_str_mv | 10.1002/adfm.202400552 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109912307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109912307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhy0EEqWwMkdiTrmzk7gZq0JppRYGQLBZ18RGqRqn2A6oG4_AM_IkpCqCken-6PvdSR9j5wgDBOCXVJp6wIEnAGnKD1gPM8xiAXx4-Nvj8zE78X4FgFKKpMdu74Ojyn59fC6asl1T0GU00c41Nb1YHSpfRxQistHMBldZXxXRWzeV2kVPRGsfTXXQrlm1tghVY0_Zkem2-uyn9tnj5PphPI3ndzez8WgeFwI5jzkJnQ7TRAqTkcFhQQhSZlkqDBalQLPEBHKNkhKOmBnShZBkEgFJjksyos8u9nc3rnlttQ9q1bTOdi-VQMhz5AJkRw32VOEa7502auOqmtxWIaidM7Vzpn6ddYF8H3iv1nr7D61GV5PFX_YblgFw1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109912307</pqid></control><display><type>article</type><title>Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fujita, Ryuji ; Gurung, Gautam ; Mawass, Mohamad‐Assaad ; Smekhova, Alevtina ; Kronast, Florian ; Toh, Alexander Kang‐Jun ; Soumyanarayanan, Anjan ; Ho, Pin ; Singh, Angadjit ; Heppell, Emily ; Backes, Dirk ; Maccherozzi, Francesco ; Watanabe, Kenji ; Taniguchi, Takashi ; Mayoh, Daniel A. ; Balakrishnan, Geetha ; van der Laan, Gerrit ; Hesjedal, Thorsten</creator><creatorcontrib>Fujita, Ryuji ; Gurung, Gautam ; Mawass, Mohamad‐Assaad ; Smekhova, Alevtina ; Kronast, Florian ; Toh, Alexander Kang‐Jun ; Soumyanarayanan, Anjan ; Ho, Pin ; Singh, Angadjit ; Heppell, Emily ; Backes, Dirk ; Maccherozzi, Francesco ; Watanabe, Kenji ; Taniguchi, Takashi ; Mayoh, Daniel A. ; Balakrishnan, Geetha ; van der Laan, Gerrit ; Hesjedal, Thorsten</creatorcontrib><description>The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions.
This study focuses on the captivating interplay between the ferromagnetic Fe3GeTe2 and the piezoelectric α‐In2Se3, both 2D van der Waals (vdW) materials. Strained heterojunctions exhibit several compelling transformations: increased domain density, reduced Curie temperature, and emergent magnetostrictive ferromagnetic domains. Using α‐In2Se3 is a versatile approach to strain‐tune vdW materials, including graphite and Te based vdW chalcogenides.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202400552</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Boron nitride ; Coercivity ; Density functional theory ; Domain walls ; Exfoliation corrosion ; Ferromagnetism ; Heterojunctions ; Heterostructures ; Magnetic anisotropy ; Magnetic domains ; magnetic materials ; Magnetic properties ; Magnetostriction ; piezoelectric materials ; Piezoelectricity ; Spin dynamics ; Thin films ; Transition temperature ; Two dimensional materials ; van der Waals materials</subject><ispartof>Advanced functional materials, 2024-09, Vol.34 (36), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3</cites><orcidid>0000-0001-7947-3692 ; 0000-0001-6048-480X ; 0000-0001-6852-2495 ; 0000-0001-8557-5812 ; 0000-0002-2399-0823 ; 0000-0003-4922-4956 ; 0000-0002-6470-2920 ; 0000-0002-5890-1149 ; 0000-0003-2680-6005 ; 0000-0002-3977-4623 ; 0000-0003-4099-2182 ; 0000-0003-3701-8119 ; 0000-0002-7020-3263 ; 0000-0002-1467-3105 ; 0000-0003-0946-2909 ; 0000-0001-7706-6276 ; 0000-0002-1019-3323 ; 0000-0003-4074-2319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Fujita, Ryuji</creatorcontrib><creatorcontrib>Gurung, Gautam</creatorcontrib><creatorcontrib>Mawass, Mohamad‐Assaad</creatorcontrib><creatorcontrib>Smekhova, Alevtina</creatorcontrib><creatorcontrib>Kronast, Florian</creatorcontrib><creatorcontrib>Toh, Alexander Kang‐Jun</creatorcontrib><creatorcontrib>Soumyanarayanan, Anjan</creatorcontrib><creatorcontrib>Ho, Pin</creatorcontrib><creatorcontrib>Singh, Angadjit</creatorcontrib><creatorcontrib>Heppell, Emily</creatorcontrib><creatorcontrib>Backes, Dirk</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Mayoh, Daniel A.</creatorcontrib><creatorcontrib>Balakrishnan, Geetha</creatorcontrib><creatorcontrib>van der Laan, Gerrit</creatorcontrib><creatorcontrib>Hesjedal, Thorsten</creatorcontrib><title>Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction</title><title>Advanced functional materials</title><description>The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions.
This study focuses on the captivating interplay between the ferromagnetic Fe3GeTe2 and the piezoelectric α‐In2Se3, both 2D van der Waals (vdW) materials. Strained heterojunctions exhibit several compelling transformations: increased domain density, reduced Curie temperature, and emergent magnetostrictive ferromagnetic domains. Using α‐In2Se3 is a versatile approach to strain‐tune vdW materials, including graphite and Te based vdW chalcogenides.</description><subject>2D materials</subject><subject>Boron nitride</subject><subject>Coercivity</subject><subject>Density functional theory</subject><subject>Domain walls</subject><subject>Exfoliation corrosion</subject><subject>Ferromagnetism</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetostriction</subject><subject>piezoelectric materials</subject><subject>Piezoelectricity</subject><subject>Spin dynamics</subject><subject>Thin films</subject><subject>Transition temperature</subject><subject>Two dimensional materials</subject><subject>van der Waals materials</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL9OwzAQhy0EEqWwMkdiTrmzk7gZq0JppRYGQLBZ18RGqRqn2A6oG4_AM_IkpCqCken-6PvdSR9j5wgDBOCXVJp6wIEnAGnKD1gPM8xiAXx4-Nvj8zE78X4FgFKKpMdu74Ojyn59fC6asl1T0GU00c41Nb1YHSpfRxQistHMBldZXxXRWzeV2kVPRGsfTXXQrlm1tghVY0_Zkem2-uyn9tnj5PphPI3ndzez8WgeFwI5jzkJnQ7TRAqTkcFhQQhSZlkqDBalQLPEBHKNkhKOmBnShZBkEgFJjksyos8u9nc3rnlttQ9q1bTOdi-VQMhz5AJkRw32VOEa7502auOqmtxWIaidM7Vzpn6ddYF8H3iv1nr7D61GV5PFX_YblgFw1Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fujita, Ryuji</creator><creator>Gurung, Gautam</creator><creator>Mawass, Mohamad‐Assaad</creator><creator>Smekhova, Alevtina</creator><creator>Kronast, Florian</creator><creator>Toh, Alexander Kang‐Jun</creator><creator>Soumyanarayanan, Anjan</creator><creator>Ho, Pin</creator><creator>Singh, Angadjit</creator><creator>Heppell, Emily</creator><creator>Backes, Dirk</creator><creator>Maccherozzi, Francesco</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Mayoh, Daniel A.</creator><creator>Balakrishnan, Geetha</creator><creator>van der Laan, Gerrit</creator><creator>Hesjedal, Thorsten</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7947-3692</orcidid><orcidid>https://orcid.org/0000-0001-6048-480X</orcidid><orcidid>https://orcid.org/0000-0001-6852-2495</orcidid><orcidid>https://orcid.org/0000-0001-8557-5812</orcidid><orcidid>https://orcid.org/0000-0002-2399-0823</orcidid><orcidid>https://orcid.org/0000-0003-4922-4956</orcidid><orcidid>https://orcid.org/0000-0002-6470-2920</orcidid><orcidid>https://orcid.org/0000-0002-5890-1149</orcidid><orcidid>https://orcid.org/0000-0003-2680-6005</orcidid><orcidid>https://orcid.org/0000-0002-3977-4623</orcidid><orcidid>https://orcid.org/0000-0003-4099-2182</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-7020-3263</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-0946-2909</orcidid><orcidid>https://orcid.org/0000-0001-7706-6276</orcidid><orcidid>https://orcid.org/0000-0002-1019-3323</orcidid><orcidid>https://orcid.org/0000-0003-4074-2319</orcidid></search><sort><creationdate>20240901</creationdate><title>Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction</title><author>Fujita, Ryuji ; Gurung, Gautam ; Mawass, Mohamad‐Assaad ; Smekhova, Alevtina ; Kronast, Florian ; Toh, Alexander Kang‐Jun ; Soumyanarayanan, Anjan ; Ho, Pin ; Singh, Angadjit ; Heppell, Emily ; Backes, Dirk ; Maccherozzi, Francesco ; Watanabe, Kenji ; Taniguchi, Takashi ; Mayoh, Daniel A. ; Balakrishnan, Geetha ; van der Laan, Gerrit ; Hesjedal, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Boron nitride</topic><topic>Coercivity</topic><topic>Density functional theory</topic><topic>Domain walls</topic><topic>Exfoliation corrosion</topic><topic>Ferromagnetism</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetostriction</topic><topic>piezoelectric materials</topic><topic>Piezoelectricity</topic><topic>Spin dynamics</topic><topic>Thin films</topic><topic>Transition temperature</topic><topic>Two dimensional materials</topic><topic>van der Waals materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujita, Ryuji</creatorcontrib><creatorcontrib>Gurung, Gautam</creatorcontrib><creatorcontrib>Mawass, Mohamad‐Assaad</creatorcontrib><creatorcontrib>Smekhova, Alevtina</creatorcontrib><creatorcontrib>Kronast, Florian</creatorcontrib><creatorcontrib>Toh, Alexander Kang‐Jun</creatorcontrib><creatorcontrib>Soumyanarayanan, Anjan</creatorcontrib><creatorcontrib>Ho, Pin</creatorcontrib><creatorcontrib>Singh, Angadjit</creatorcontrib><creatorcontrib>Heppell, Emily</creatorcontrib><creatorcontrib>Backes, Dirk</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Mayoh, Daniel A.</creatorcontrib><creatorcontrib>Balakrishnan, Geetha</creatorcontrib><creatorcontrib>van der Laan, Gerrit</creatorcontrib><creatorcontrib>Hesjedal, Thorsten</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujita, Ryuji</au><au>Gurung, Gautam</au><au>Mawass, Mohamad‐Assaad</au><au>Smekhova, Alevtina</au><au>Kronast, Florian</au><au>Toh, Alexander Kang‐Jun</au><au>Soumyanarayanan, Anjan</au><au>Ho, Pin</au><au>Singh, Angadjit</au><au>Heppell, Emily</au><au>Backes, Dirk</au><au>Maccherozzi, Francesco</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Mayoh, Daniel A.</au><au>Balakrishnan, Geetha</au><au>van der Laan, Gerrit</au><au>Hesjedal, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions.
This study focuses on the captivating interplay between the ferromagnetic Fe3GeTe2 and the piezoelectric α‐In2Se3, both 2D van der Waals (vdW) materials. Strained heterojunctions exhibit several compelling transformations: increased domain density, reduced Curie temperature, and emergent magnetostrictive ferromagnetic domains. Using α‐In2Se3 is a versatile approach to strain‐tune vdW materials, including graphite and Te based vdW chalcogenides.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202400552</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7947-3692</orcidid><orcidid>https://orcid.org/0000-0001-6048-480X</orcidid><orcidid>https://orcid.org/0000-0001-6852-2495</orcidid><orcidid>https://orcid.org/0000-0001-8557-5812</orcidid><orcidid>https://orcid.org/0000-0002-2399-0823</orcidid><orcidid>https://orcid.org/0000-0003-4922-4956</orcidid><orcidid>https://orcid.org/0000-0002-6470-2920</orcidid><orcidid>https://orcid.org/0000-0002-5890-1149</orcidid><orcidid>https://orcid.org/0000-0003-2680-6005</orcidid><orcidid>https://orcid.org/0000-0002-3977-4623</orcidid><orcidid>https://orcid.org/0000-0003-4099-2182</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-7020-3263</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-0946-2909</orcidid><orcidid>https://orcid.org/0000-0001-7706-6276</orcidid><orcidid>https://orcid.org/0000-0002-1019-3323</orcidid><orcidid>https://orcid.org/0000-0003-4074-2319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-09, Vol.34 (36), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3109912307 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 2D materials Boron nitride Coercivity Density functional theory Domain walls Exfoliation corrosion Ferromagnetism Heterojunctions Heterostructures Magnetic anisotropy Magnetic domains magnetic materials Magnetic properties Magnetostriction piezoelectric materials Piezoelectricity Spin dynamics Thin films Transition temperature Two dimensional materials van der Waals materials |
title | Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%E2%80%90Modulated%20Ferromagnetism%20at%20an%20Intrinsic%20van%20der%20Waals%20Heterojunction&rft.jtitle=Advanced%20functional%20materials&rft.au=Fujita,%20Ryuji&rft.date=2024-09-01&rft.volume=34&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202400552&rft_dat=%3Cproquest_cross%3E3109912307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3122-2a3e585473f6af18ca10776653f1cd31fb1409e17a42116faec37af430491baf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3109912307&rft_id=info:pmid/&rfr_iscdi=true |