Loading…

Hypersonic edge solitons in graphene under quantum Hall effect

We consider a graphene sheet with a zigzag edge subject to a perpendicular magnetic field and investigate the evolution of in-plane elastic edge deformation. In such a system, resonant electronic edge states generate a strong Landau damping of low-amplitude acoustic edge waves with specific wave vec...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2015-11, Vol.112 (4), p.44004
Main Authors: Vikström, A., Gorelik, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a graphene sheet with a zigzag edge subject to a perpendicular magnetic field and investigate the evolution of in-plane elastic edge deformation. In such a system, resonant electronic edge states generate a strong Landau damping of low-amplitude acoustic edge waves with specific wave vectors. We study the propagation of a short hypersonic edge pulse in the case of a strong interaction with resonant electronic edge states. Using the resonance approximation, we derive the system of equations describing the evolution of the pulse and show that self-induced transparency can appear under certain conditions. As a consequence, pulses with particular profiles can travel without attenuation at a velocity different from that of sound.
ISSN:0295-5075
1286-4854
1286-4854
DOI:10.1209/0295-5075/112/44004