Loading…
Persistent agents in Axelrod's social dynamics model
Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. I...
Saved in:
Published in: | Europhysics letters 2016-01, Vol.113 (1), p.18003-18003 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33 |
container_end_page | 18003 |
container_issue | 1 |
container_start_page | 18003 |
container_title | Europhysics letters |
container_volume | 113 |
creator | Reia, Sandro M. C. Neves, Ubiraci P. |
description | Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p. |
doi_str_mv | 10.1209/0295-5075/113/18003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110112188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835613817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWKtf4GbARd2Mk5vMTDJLqU8o-MDXLqR5yNR5mbTQ_r2pUyqIuEk25yT3HoSOAZ8BwUWCSZHFGWZZAkAT4BjTHTQAwvM45Vm6iwZbYh8deD_DGIBDPkDpvXG-9HPTzCP5Hk4flU10vjSVa_XIR75VpawivWpkXSof1a021SHas7Ly5mhzD9Hz1eXT-Cae3F3fjs8nsUoJnsdSF5aywljF8hynzLJCAbbKksJKxi3BGuzUEKwyZgifYk0CUugi6JpOKR2i0_7dzrWfC-Pnoi69MlUlG9MuvABOsxwoBxbQk1_orF24JkwnKEDYlgDngaI9pVzrvTNWdK6spVsJwGJdUqw7iXUnEUqK75LBintr3Wm5VaT7EDmjAeX4VbxcPIwfKXDxFvhkw7fdzxj__zD6wzBd1TM9JTpt6RdRkY6W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110112188</pqid></control><display><type>article</type><title>Persistent agents in Axelrod's social dynamics model</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Reia, Sandro M. ; C. Neves, Ubiraci P.</creator><creatorcontrib>Reia, Sandro M. ; C. Neves, Ubiraci P.</creatorcontrib><description>Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/113/18003</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>05.50.+q ; 87.23.Ge ; 89.75.Fb ; Adhesion ; Bonding agents ; Constants ; Cultural aspects ; Decay ; Dynamical systems ; Dynamics ; Information dissemination ; Mathematical models ; Phase diagrams</subject><ispartof>Europhysics letters, 2016-01, Vol.113 (1), p.18003-18003</ispartof><rights>Copyright © EPLA, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33</citedby><cites>FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reia, Sandro M.</creatorcontrib><creatorcontrib>C. Neves, Ubiraci P.</creatorcontrib><title>Persistent agents in Axelrod's social dynamics model</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.</description><subject>05.50.+q</subject><subject>87.23.Ge</subject><subject>89.75.Fb</subject><subject>Adhesion</subject><subject>Bonding agents</subject><subject>Constants</subject><subject>Cultural aspects</subject><subject>Decay</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Information dissemination</subject><subject>Mathematical models</subject><subject>Phase diagrams</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUQIMoWKtf4GbARd2Mk5vMTDJLqU8o-MDXLqR5yNR5mbTQ_r2pUyqIuEk25yT3HoSOAZ8BwUWCSZHFGWZZAkAT4BjTHTQAwvM45Vm6iwZbYh8deD_DGIBDPkDpvXG-9HPTzCP5Hk4flU10vjSVa_XIR75VpawivWpkXSof1a021SHas7Ly5mhzD9Hz1eXT-Cae3F3fjs8nsUoJnsdSF5aywljF8hynzLJCAbbKksJKxi3BGuzUEKwyZgifYk0CUugi6JpOKR2i0_7dzrWfC-Pnoi69MlUlG9MuvABOsxwoBxbQk1_orF24JkwnKEDYlgDngaI9pVzrvTNWdK6spVsJwGJdUqw7iXUnEUqK75LBintr3Wm5VaT7EDmjAeX4VbxcPIwfKXDxFvhkw7fdzxj__zD6wzBd1TM9JTpt6RdRkY6W</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Reia, Sandro M.</creator><creator>C. Neves, Ubiraci P.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Persistent agents in Axelrod's social dynamics model</title><author>Reia, Sandro M. ; C. Neves, Ubiraci P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>05.50.+q</topic><topic>87.23.Ge</topic><topic>89.75.Fb</topic><topic>Adhesion</topic><topic>Bonding agents</topic><topic>Constants</topic><topic>Cultural aspects</topic><topic>Decay</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Information dissemination</topic><topic>Mathematical models</topic><topic>Phase diagrams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reia, Sandro M.</creatorcontrib><creatorcontrib>C. Neves, Ubiraci P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reia, Sandro M.</au><au>C. Neves, Ubiraci P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent agents in Axelrod's social dynamics model</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>113</volume><issue>1</issue><spage>18003</spage><epage>18003</epage><pages>18003-18003</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/113/18003</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2016-01, Vol.113 (1), p.18003-18003 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_proquest_journals_3110112188 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | 05.50.+q 87.23.Ge 89.75.Fb Adhesion Bonding agents Constants Cultural aspects Decay Dynamical systems Dynamics Information dissemination Mathematical models Phase diagrams |
title | Persistent agents in Axelrod's social dynamics model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20agents%20in%20Axelrod's%20social%20dynamics%20model&rft.jtitle=Europhysics%20letters&rft.au=Reia,%20Sandro%20M.&rft.date=2016-01-01&rft.volume=113&rft.issue=1&rft.spage=18003&rft.epage=18003&rft.pages=18003-18003&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/113/18003&rft_dat=%3Cproquest_cross%3E1835613817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110112188&rft_id=info:pmid/&rfr_iscdi=true |