Loading…

Persistent agents in Axelrod's social dynamics model

Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. I...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2016-01, Vol.113 (1), p.18003-18003
Main Authors: Reia, Sandro M., C. Neves, Ubiraci P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33
cites cdi_FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33
container_end_page 18003
container_issue 1
container_start_page 18003
container_title Europhysics letters
container_volume 113
creator Reia, Sandro M.
C. Neves, Ubiraci P.
description Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.
doi_str_mv 10.1209/0295-5075/113/18003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110112188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835613817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWKtf4GbARd2Mk5vMTDJLqU8o-MDXLqR5yNR5mbTQ_r2pUyqIuEk25yT3HoSOAZ8BwUWCSZHFGWZZAkAT4BjTHTQAwvM45Vm6iwZbYh8deD_DGIBDPkDpvXG-9HPTzCP5Hk4flU10vjSVa_XIR75VpawivWpkXSof1a021SHas7Ly5mhzD9Hz1eXT-Cae3F3fjs8nsUoJnsdSF5aywljF8hynzLJCAbbKksJKxi3BGuzUEKwyZgifYk0CUugi6JpOKR2i0_7dzrWfC-Pnoi69MlUlG9MuvABOsxwoBxbQk1_orF24JkwnKEDYlgDngaI9pVzrvTNWdK6spVsJwGJdUqw7iXUnEUqK75LBintr3Wm5VaT7EDmjAeX4VbxcPIwfKXDxFvhkw7fdzxj__zD6wzBd1TM9JTpt6RdRkY6W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110112188</pqid></control><display><type>article</type><title>Persistent agents in Axelrod's social dynamics model</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Reia, Sandro M. ; C. Neves, Ubiraci P.</creator><creatorcontrib>Reia, Sandro M. ; C. Neves, Ubiraci P.</creatorcontrib><description>Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/113/18003</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>05.50.+q ; 87.23.Ge ; 89.75.Fb ; Adhesion ; Bonding agents ; Constants ; Cultural aspects ; Decay ; Dynamical systems ; Dynamics ; Information dissemination ; Mathematical models ; Phase diagrams</subject><ispartof>Europhysics letters, 2016-01, Vol.113 (1), p.18003-18003</ispartof><rights>Copyright © EPLA, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33</citedby><cites>FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reia, Sandro M.</creatorcontrib><creatorcontrib>C. Neves, Ubiraci P.</creatorcontrib><title>Persistent agents in Axelrod's social dynamics model</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.</description><subject>05.50.+q</subject><subject>87.23.Ge</subject><subject>89.75.Fb</subject><subject>Adhesion</subject><subject>Bonding agents</subject><subject>Constants</subject><subject>Cultural aspects</subject><subject>Decay</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Information dissemination</subject><subject>Mathematical models</subject><subject>Phase diagrams</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUQIMoWKtf4GbARd2Mk5vMTDJLqU8o-MDXLqR5yNR5mbTQ_r2pUyqIuEk25yT3HoSOAZ8BwUWCSZHFGWZZAkAT4BjTHTQAwvM45Vm6iwZbYh8deD_DGIBDPkDpvXG-9HPTzCP5Hk4flU10vjSVa_XIR75VpawivWpkXSof1a021SHas7Ly5mhzD9Hz1eXT-Cae3F3fjs8nsUoJnsdSF5aywljF8hynzLJCAbbKksJKxi3BGuzUEKwyZgifYk0CUugi6JpOKR2i0_7dzrWfC-Pnoi69MlUlG9MuvABOsxwoBxbQk1_orF24JkwnKEDYlgDngaI9pVzrvTNWdK6spVsJwGJdUqw7iXUnEUqK75LBintr3Wm5VaT7EDmjAeX4VbxcPIwfKXDxFvhkw7fdzxj__zD6wzBd1TM9JTpt6RdRkY6W</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Reia, Sandro M.</creator><creator>C. Neves, Ubiraci P.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Persistent agents in Axelrod's social dynamics model</title><author>Reia, Sandro M. ; C. Neves, Ubiraci P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>05.50.+q</topic><topic>87.23.Ge</topic><topic>89.75.Fb</topic><topic>Adhesion</topic><topic>Bonding agents</topic><topic>Constants</topic><topic>Cultural aspects</topic><topic>Decay</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Information dissemination</topic><topic>Mathematical models</topic><topic>Phase diagrams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reia, Sandro M.</creatorcontrib><creatorcontrib>C. Neves, Ubiraci P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reia, Sandro M.</au><au>C. Neves, Ubiraci P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent agents in Axelrod's social dynamics model</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>113</volume><issue>1</issue><spage>18003</spage><epage>18003</epage><pages>18003-18003</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/113/18003</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2016-01, Vol.113 (1), p.18003-18003
issn 0295-5075
1286-4854
language eng
recordid cdi_proquest_journals_3110112188
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 05.50.+q
87.23.Ge
89.75.Fb
Adhesion
Bonding agents
Constants
Cultural aspects
Decay
Dynamical systems
Dynamics
Information dissemination
Mathematical models
Phase diagrams
title Persistent agents in Axelrod's social dynamics model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20agents%20in%20Axelrod's%20social%20dynamics%20model&rft.jtitle=Europhysics%20letters&rft.au=Reia,%20Sandro%20M.&rft.date=2016-01-01&rft.volume=113&rft.issue=1&rft.spage=18003&rft.epage=18003&rft.pages=18003-18003&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/113/18003&rft_dat=%3Cproquest_cross%3E1835613817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-ad9f379efc766047f79c10fcf29fa78f20d1fbe20c57e28b0d2f799d9c42d3b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110112188&rft_id=info:pmid/&rfr_iscdi=true