Loading…

The stability of spherocyte membranes: Theoretical study

Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morpho...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2019-11, Vol.128 (3), p.38001
Main Authors: Mu, W., Ou-Yang, Z-c., Cao, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463
cites cdi_FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463
container_end_page
container_issue 3
container_start_page 38001
container_title Europhysics letters
container_volume 128
creator Mu, W.
Ou-Yang, Z-c.
Cao, J.
description Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morphologies and physiological functions. The present work studies how various factors affect the morphologies of the RBC membrane based on a free energy functional in continuum elasticity descriptions. In particular, the instability conditions of a diseased spherocyte's spherical shape is obtained explicitly, which determines the region in the phase diagram constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc., in which the spherocyte's membrane can exist in a stable form. In this phase diagram, each point represents the statistical results for a large number of samples observed in recent experiments. Within this stable region of spherocyte's membrane, the spherical RBC membrane is in the global minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte's membrane corresponds to the global minimal state. Our results could be used as a theoretical guide for clinical applications in related diseases, such as malaria, and are in quantitative agreement with recent dynamic optical measurements on the morphological transition of the RBC membrane (see Park Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731).
doi_str_mv 10.1209/0295-5075/128/38001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110114653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110114653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pJ_BS8OCpNu_NvInvOhR1smNI2yess1tr0oH99mZ2zIt4SgK_f57kj9AxwWeE4lGC6UjEAqciIVQlTGFMdtAg7GXMleC7aLAV--jA-3kARBE5QGoyg8i3Jiursu2i2ka-mYGr866FaAGLzJkl-PMosNpBW-amCnxVdIdoz5rKw9FmHaL3m-vJ5V08fr69v7wYxzlTaRsXmFtlpOSYcsCiyJglRQq5sDbNjKKSF1SNpEqBc2mkAqYYGQHNjQDKuGRDdNLf27j6cwW-1fN65ZZhpGaEhG9wKVhQrFe5q713YHXjyoVxnSZYryvS6wL0uoBwVPqnopCK-1TpW_jaRoz70DJlgSo81W9Xrw9Pj-pFT4NPNr5ufp_x_4TTPxLQVL3plW4Ky74Bw7uCHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110114653</pqid></control><display><type>article</type><title>The stability of spherocyte membranes: Theoretical study</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Mu, W. ; Ou-Yang, Z-c. ; Cao, J.</creator><creatorcontrib>Mu, W. ; Ou-Yang, Z-c. ; Cao, J.</creatorcontrib><description>Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morphologies and physiological functions. The present work studies how various factors affect the morphologies of the RBC membrane based on a free energy functional in continuum elasticity descriptions. In particular, the instability conditions of a diseased spherocyte's spherical shape is obtained explicitly, which determines the region in the phase diagram constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc., in which the spherocyte's membrane can exist in a stable form. In this phase diagram, each point represents the statistical results for a large number of samples observed in recent experiments. Within this stable region of spherocyte's membrane, the spherical RBC membrane is in the global minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte's membrane corresponds to the global minimal state. Our results could be used as a theoretical guide for clinical applications in related diseases, such as malaria, and are in quantitative agreement with recent dynamic optical measurements on the morphological transition of the RBC membrane (see Park Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731).</description><identifier>ISSN: 0295-5075</identifier><identifier>ISSN: 1286-4854</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/128/38001</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>87.16.ad ; 87.16.D ; 87.16.dm ; Erythrocytes ; Free energy ; Functionals ; Malaria ; Material properties ; Membranes ; Modulus of elasticity ; Morphology ; Optical measurement ; Osmosis ; Phase diagrams ; Physiological effects ; Physiology ; Statistical analysis</subject><ispartof>Europhysics letters, 2019-11, Vol.128 (3), p.38001</ispartof><rights>Copyright © EPLA, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463</citedby><cites>FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mu, W.</creatorcontrib><creatorcontrib>Ou-Yang, Z-c.</creatorcontrib><creatorcontrib>Cao, J.</creatorcontrib><title>The stability of spherocyte membranes: Theoretical study</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morphologies and physiological functions. The present work studies how various factors affect the morphologies of the RBC membrane based on a free energy functional in continuum elasticity descriptions. In particular, the instability conditions of a diseased spherocyte's spherical shape is obtained explicitly, which determines the region in the phase diagram constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc., in which the spherocyte's membrane can exist in a stable form. In this phase diagram, each point represents the statistical results for a large number of samples observed in recent experiments. Within this stable region of spherocyte's membrane, the spherical RBC membrane is in the global minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte's membrane corresponds to the global minimal state. Our results could be used as a theoretical guide for clinical applications in related diseases, such as malaria, and are in quantitative agreement with recent dynamic optical measurements on the morphological transition of the RBC membrane (see Park Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731).</description><subject>87.16.ad</subject><subject>87.16.D</subject><subject>87.16.dm</subject><subject>Erythrocytes</subject><subject>Free energy</subject><subject>Functionals</subject><subject>Malaria</subject><subject>Material properties</subject><subject>Membranes</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Optical measurement</subject><subject>Osmosis</subject><subject>Phase diagrams</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Statistical analysis</subject><issn>0295-5075</issn><issn>1286-4854</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pJ_BS8OCpNu_NvInvOhR1smNI2yess1tr0oH99mZ2zIt4SgK_f57kj9AxwWeE4lGC6UjEAqciIVQlTGFMdtAg7GXMleC7aLAV--jA-3kARBE5QGoyg8i3Jiursu2i2ka-mYGr866FaAGLzJkl-PMosNpBW-amCnxVdIdoz5rKw9FmHaL3m-vJ5V08fr69v7wYxzlTaRsXmFtlpOSYcsCiyJglRQq5sDbNjKKSF1SNpEqBc2mkAqYYGQHNjQDKuGRDdNLf27j6cwW-1fN65ZZhpGaEhG9wKVhQrFe5q713YHXjyoVxnSZYryvS6wL0uoBwVPqnopCK-1TpW_jaRoz70DJlgSo81W9Xrw9Pj-pFT4NPNr5ufp_x_4TTPxLQVL3plW4Ky74Bw7uCHQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Mu, W.</creator><creator>Ou-Yang, Z-c.</creator><creator>Cao, J.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191101</creationdate><title>The stability of spherocyte membranes: Theoretical study</title><author>Mu, W. ; Ou-Yang, Z-c. ; Cao, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>87.16.ad</topic><topic>87.16.D</topic><topic>87.16.dm</topic><topic>Erythrocytes</topic><topic>Free energy</topic><topic>Functionals</topic><topic>Malaria</topic><topic>Material properties</topic><topic>Membranes</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Optical measurement</topic><topic>Osmosis</topic><topic>Phase diagrams</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, W.</creatorcontrib><creatorcontrib>Ou-Yang, Z-c.</creatorcontrib><creatorcontrib>Cao, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, W.</au><au>Ou-Yang, Z-c.</au><au>Cao, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stability of spherocyte membranes: Theoretical study</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>128</volume><issue>3</issue><spage>38001</spage><pages>38001-</pages><issn>0295-5075</issn><issn>1286-4854</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morphologies and physiological functions. The present work studies how various factors affect the morphologies of the RBC membrane based on a free energy functional in continuum elasticity descriptions. In particular, the instability conditions of a diseased spherocyte's spherical shape is obtained explicitly, which determines the region in the phase diagram constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc., in which the spherocyte's membrane can exist in a stable form. In this phase diagram, each point represents the statistical results for a large number of samples observed in recent experiments. Within this stable region of spherocyte's membrane, the spherical RBC membrane is in the global minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte's membrane corresponds to the global minimal state. Our results could be used as a theoretical guide for clinical applications in related diseases, such as malaria, and are in quantitative agreement with recent dynamic optical measurements on the morphological transition of the RBC membrane (see Park Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731).</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/128/38001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2019-11, Vol.128 (3), p.38001
issn 0295-5075
1286-4854
1286-4854
language eng
recordid cdi_proquest_journals_3110114653
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 87.16.ad
87.16.D
87.16.dm
Erythrocytes
Free energy
Functionals
Malaria
Material properties
Membranes
Modulus of elasticity
Morphology
Optical measurement
Osmosis
Phase diagrams
Physiological effects
Physiology
Statistical analysis
title The stability of spherocyte membranes: Theoretical study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stability%20of%20spherocyte%20membranes:%20Theoretical%20study&rft.jtitle=Europhysics%20letters&rft.au=Mu,%20W.&rft.date=2019-11-01&rft.volume=128&rft.issue=3&rft.spage=38001&rft.pages=38001-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/128/38001&rft_dat=%3Cproquest_cross%3E3110114653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110114653&rft_id=info:pmid/&rfr_iscdi=true