Loading…
The stability of spherocyte membranes: Theoretical study
Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morpho...
Saved in:
Published in: | Europhysics letters 2019-11, Vol.128 (3), p.38001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463 |
container_end_page | |
container_issue | 3 |
container_start_page | 38001 |
container_title | Europhysics letters |
container_volume | 128 |
creator | Mu, W. Ou-Yang, Z-c. Cao, J. |
description | Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morphologies and physiological functions. The present work studies how various factors affect the morphologies of the RBC membrane based on a free energy functional in continuum elasticity descriptions. In particular, the instability conditions of a diseased spherocyte's spherical shape is obtained explicitly, which determines the region in the phase diagram constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc., in which the spherocyte's membrane can exist in a stable form. In this phase diagram, each point represents the statistical results for a large number of samples observed in recent experiments. Within this stable region of spherocyte's membrane, the spherical RBC membrane is in the global minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte's membrane corresponds to the global minimal state. Our results could be used as a theoretical guide for clinical applications in related diseases, such as malaria, and are in quantitative agreement with recent dynamic optical measurements on the morphological transition of the RBC membrane (see Park Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731). |
doi_str_mv | 10.1209/0295-5075/128/38001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110114653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110114653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pJ_BS8OCpNu_NvInvOhR1smNI2yess1tr0oH99mZ2zIt4SgK_f57kj9AxwWeE4lGC6UjEAqciIVQlTGFMdtAg7GXMleC7aLAV--jA-3kARBE5QGoyg8i3Jiursu2i2ka-mYGr866FaAGLzJkl-PMosNpBW-amCnxVdIdoz5rKw9FmHaL3m-vJ5V08fr69v7wYxzlTaRsXmFtlpOSYcsCiyJglRQq5sDbNjKKSF1SNpEqBc2mkAqYYGQHNjQDKuGRDdNLf27j6cwW-1fN65ZZhpGaEhG9wKVhQrFe5q713YHXjyoVxnSZYryvS6wL0uoBwVPqnopCK-1TpW_jaRoz70DJlgSo81W9Xrw9Pj-pFT4NPNr5ufp_x_4TTPxLQVL3plW4Ky74Bw7uCHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110114653</pqid></control><display><type>article</type><title>The stability of spherocyte membranes: Theoretical study</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Mu, W. ; Ou-Yang, Z-c. ; Cao, J.</creator><creatorcontrib>Mu, W. ; Ou-Yang, Z-c. ; Cao, J.</creatorcontrib><description>Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morphologies and physiological functions. The present work studies how various factors affect the morphologies of the RBC membrane based on a free energy functional in continuum elasticity descriptions. In particular, the instability conditions of a diseased spherocyte's spherical shape is obtained explicitly, which determines the region in the phase diagram constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc., in which the spherocyte's membrane can exist in a stable form. In this phase diagram, each point represents the statistical results for a large number of samples observed in recent experiments. Within this stable region of spherocyte's membrane, the spherical RBC membrane is in the global minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte's membrane corresponds to the global minimal state. Our results could be used as a theoretical guide for clinical applications in related diseases, such as malaria, and are in quantitative agreement with recent dynamic optical measurements on the morphological transition of the RBC membrane (see Park Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731).</description><identifier>ISSN: 0295-5075</identifier><identifier>ISSN: 1286-4854</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/128/38001</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>87.16.ad ; 87.16.D ; 87.16.dm ; Erythrocytes ; Free energy ; Functionals ; Malaria ; Material properties ; Membranes ; Modulus of elasticity ; Morphology ; Optical measurement ; Osmosis ; Phase diagrams ; Physiological effects ; Physiology ; Statistical analysis</subject><ispartof>Europhysics letters, 2019-11, Vol.128 (3), p.38001</ispartof><rights>Copyright © EPLA, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463</citedby><cites>FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mu, W.</creatorcontrib><creatorcontrib>Ou-Yang, Z-c.</creatorcontrib><creatorcontrib>Cao, J.</creatorcontrib><title>The stability of spherocyte membranes: Theoretical study</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morphologies and physiological functions. The present work studies how various factors affect the morphologies of the RBC membrane based on a free energy functional in continuum elasticity descriptions. In particular, the instability conditions of a diseased spherocyte's spherical shape is obtained explicitly, which determines the region in the phase diagram constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc., in which the spherocyte's membrane can exist in a stable form. In this phase diagram, each point represents the statistical results for a large number of samples observed in recent experiments. Within this stable region of spherocyte's membrane, the spherical RBC membrane is in the global minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte's membrane corresponds to the global minimal state. Our results could be used as a theoretical guide for clinical applications in related diseases, such as malaria, and are in quantitative agreement with recent dynamic optical measurements on the morphological transition of the RBC membrane (see Park Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731).</description><subject>87.16.ad</subject><subject>87.16.D</subject><subject>87.16.dm</subject><subject>Erythrocytes</subject><subject>Free energy</subject><subject>Functionals</subject><subject>Malaria</subject><subject>Material properties</subject><subject>Membranes</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Optical measurement</subject><subject>Osmosis</subject><subject>Phase diagrams</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Statistical analysis</subject><issn>0295-5075</issn><issn>1286-4854</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pJ_BS8OCpNu_NvInvOhR1smNI2yess1tr0oH99mZ2zIt4SgK_f57kj9AxwWeE4lGC6UjEAqciIVQlTGFMdtAg7GXMleC7aLAV--jA-3kARBE5QGoyg8i3Jiursu2i2ka-mYGr866FaAGLzJkl-PMosNpBW-amCnxVdIdoz5rKw9FmHaL3m-vJ5V08fr69v7wYxzlTaRsXmFtlpOSYcsCiyJglRQq5sDbNjKKSF1SNpEqBc2mkAqYYGQHNjQDKuGRDdNLf27j6cwW-1fN65ZZhpGaEhG9wKVhQrFe5q713YHXjyoVxnSZYryvS6wL0uoBwVPqnopCK-1TpW_jaRoz70DJlgSo81W9Xrw9Pj-pFT4NPNr5ufp_x_4TTPxLQVL3plW4Ky74Bw7uCHQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Mu, W.</creator><creator>Ou-Yang, Z-c.</creator><creator>Cao, J.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191101</creationdate><title>The stability of spherocyte membranes: Theoretical study</title><author>Mu, W. ; Ou-Yang, Z-c. ; Cao, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>87.16.ad</topic><topic>87.16.D</topic><topic>87.16.dm</topic><topic>Erythrocytes</topic><topic>Free energy</topic><topic>Functionals</topic><topic>Malaria</topic><topic>Material properties</topic><topic>Membranes</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Optical measurement</topic><topic>Osmosis</topic><topic>Phase diagrams</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, W.</creatorcontrib><creatorcontrib>Ou-Yang, Z-c.</creatorcontrib><creatorcontrib>Cao, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, W.</au><au>Ou-Yang, Z-c.</au><au>Cao, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stability of spherocyte membranes: Theoretical study</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>128</volume><issue>3</issue><spage>38001</spage><pages>38001-</pages><issn>0295-5075</issn><issn>1286-4854</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>Human red blood cell (RBC) membranes are typically biconcave-shaped under physiological conditions, and membranes of other shapes, such as spherical, are also observed in pathological RBCs. It has been suggested that there is a relationship between the RBC membrane's material properties, morphologies and physiological functions. The present work studies how various factors affect the morphologies of the RBC membrane based on a free energy functional in continuum elasticity descriptions. In particular, the instability conditions of a diseased spherocyte's spherical shape is obtained explicitly, which determines the region in the phase diagram constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc., in which the spherocyte's membrane can exist in a stable form. In this phase diagram, each point represents the statistical results for a large number of samples observed in recent experiments. Within this stable region of spherocyte's membrane, the spherical RBC membrane is in the global minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte's membrane corresponds to the global minimal state. Our results could be used as a theoretical guide for clinical applications in related diseases, such as malaria, and are in quantitative agreement with recent dynamic optical measurements on the morphological transition of the RBC membrane (see Park Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731).</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/128/38001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2019-11, Vol.128 (3), p.38001 |
issn | 0295-5075 1286-4854 1286-4854 |
language | eng |
recordid | cdi_proquest_journals_3110114653 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | 87.16.ad 87.16.D 87.16.dm Erythrocytes Free energy Functionals Malaria Material properties Membranes Modulus of elasticity Morphology Optical measurement Osmosis Phase diagrams Physiological effects Physiology Statistical analysis |
title | The stability of spherocyte membranes: Theoretical study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stability%20of%20spherocyte%20membranes:%20Theoretical%20study&rft.jtitle=Europhysics%20letters&rft.au=Mu,%20W.&rft.date=2019-11-01&rft.volume=128&rft.issue=3&rft.spage=38001&rft.pages=38001-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/128/38001&rft_dat=%3Cproquest_cross%3E3110114653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-d04f8a664024e05db3f1d7ec5ff7ba8264d289687e446a68e38319e2ca5e23463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110114653&rft_id=info:pmid/&rfr_iscdi=true |