Loading…

Reversible feedback confinement

We present a feedback protocol that is able to confine a system to a single micro-state without heat dissipation. The protocol adjusts the Hamiltonian of the system in such a way that the Bayesian posterior distribution after measurement is in equilibrium. As a result, the whole process satisfies fe...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2016-09, Vol.115 (5), p.50007
Main Authors: Granger, Léo, Dinis, Luis, Horowitz, Jordan M., Parrondo, Juan M. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a feedback protocol that is able to confine a system to a single micro-state without heat dissipation. The protocol adjusts the Hamiltonian of the system in such a way that the Bayesian posterior distribution after measurement is in equilibrium. As a result, the whole process satisfies feedback reversibility -the process is indistinguishable from its time reversal- and assures the lowest possible dissipation for confinement. In spite of the whole process being reversible it can surprisingly be implemented in finite time. We illustrate the idea with a Brownian particle in a harmonic trap with increasing stiffness and present a general theory of reversible feedback confinement for systems with discrete states.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/115/50007