Loading…

Multirotor Nonlinear Model Predictive Control based on Visual Servoing of Evolving Features

This article presents a Visual Servoing Nonlinear Model Predictive Control (NMPC) scheme for autonomously tracking a moving target using multirotor Unmanned Aerial Vehicles (UAVs). The scheme is developed for surveillance and tracking of contour-based areas with evolving features. NMPC is used to ma...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Aspragkathos, Sotirios N, Rousseas, Panagiotis, Karras, George C, Kyriakopoulos, Kostas J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Aspragkathos, Sotirios N
Rousseas, Panagiotis
Karras, George C
Kyriakopoulos, Kostas J
description This article presents a Visual Servoing Nonlinear Model Predictive Control (NMPC) scheme for autonomously tracking a moving target using multirotor Unmanned Aerial Vehicles (UAVs). The scheme is developed for surveillance and tracking of contour-based areas with evolving features. NMPC is used to manage input and state constraints, while additional barrier functions are incorporated in order to ensure system safety and optimal performance. The proposed control scheme is designed based on the extraction and implementation of the full dynamic model of the features describing the target and the state variables. Real-time simulations and experiments using a quadrotor UAV equipped with a camera demonstrate the effectiveness of the proposed strategy.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3110125723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110125723</sourcerecordid><originalsourceid>FETCH-proquest_journals_31101257233</originalsourceid><addsrcrecordid>eNqNjsEKgkAURYcgSMp_eNBa0DGzvShtjKBo00KmfMbIMK_ezPj9FfQBre6BcxZ3JiKZ51my20i5ELFzY5qmclvKosgjcW2D8ZrJE8OBrNEWFUNLPRo4Mvb67vWEUJH1TAZuymEPZOGiXVAGTsgTafsAGqCeyExfblD5wOhWYj4o4zD-7VKsm_pc7ZMn0yug891Ige1HdXmWpZksys_T_6o3p7lDNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110125723</pqid></control><display><type>article</type><title>Multirotor Nonlinear Model Predictive Control based on Visual Servoing of Evolving Features</title><source>ProQuest - Publicly Available Content Database</source><creator>Aspragkathos, Sotirios N ; Rousseas, Panagiotis ; Karras, George C ; Kyriakopoulos, Kostas J</creator><creatorcontrib>Aspragkathos, Sotirios N ; Rousseas, Panagiotis ; Karras, George C ; Kyriakopoulos, Kostas J</creatorcontrib><description>This article presents a Visual Servoing Nonlinear Model Predictive Control (NMPC) scheme for autonomously tracking a moving target using multirotor Unmanned Aerial Vehicles (UAVs). The scheme is developed for surveillance and tracking of contour-based areas with evolving features. NMPC is used to manage input and state constraints, while additional barrier functions are incorporated in order to ensure system safety and optimal performance. The proposed control scheme is designed based on the extraction and implementation of the full dynamic model of the features describing the target and the state variables. Real-time simulations and experiments using a quadrotor UAV equipped with a camera demonstrate the effectiveness of the proposed strategy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dynamic models ; Moving targets ; Nonlinear control ; Predictive control ; Real variables ; Safety management ; Servocontrol ; Tracking ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3110125723?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Aspragkathos, Sotirios N</creatorcontrib><creatorcontrib>Rousseas, Panagiotis</creatorcontrib><creatorcontrib>Karras, George C</creatorcontrib><creatorcontrib>Kyriakopoulos, Kostas J</creatorcontrib><title>Multirotor Nonlinear Model Predictive Control based on Visual Servoing of Evolving Features</title><title>arXiv.org</title><description>This article presents a Visual Servoing Nonlinear Model Predictive Control (NMPC) scheme for autonomously tracking a moving target using multirotor Unmanned Aerial Vehicles (UAVs). The scheme is developed for surveillance and tracking of contour-based areas with evolving features. NMPC is used to manage input and state constraints, while additional barrier functions are incorporated in order to ensure system safety and optimal performance. The proposed control scheme is designed based on the extraction and implementation of the full dynamic model of the features describing the target and the state variables. Real-time simulations and experiments using a quadrotor UAV equipped with a camera demonstrate the effectiveness of the proposed strategy.</description><subject>Dynamic models</subject><subject>Moving targets</subject><subject>Nonlinear control</subject><subject>Predictive control</subject><subject>Real variables</subject><subject>Safety management</subject><subject>Servocontrol</subject><subject>Tracking</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjsEKgkAURYcgSMp_eNBa0DGzvShtjKBo00KmfMbIMK_ezPj9FfQBre6BcxZ3JiKZ51my20i5ELFzY5qmclvKosgjcW2D8ZrJE8OBrNEWFUNLPRo4Mvb67vWEUJH1TAZuymEPZOGiXVAGTsgTafsAGqCeyExfblD5wOhWYj4o4zD-7VKsm_pc7ZMn0yug891Ige1HdXmWpZksys_T_6o3p7lDNQ</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Aspragkathos, Sotirios N</creator><creator>Rousseas, Panagiotis</creator><creator>Karras, George C</creator><creator>Kyriakopoulos, Kostas J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240925</creationdate><title>Multirotor Nonlinear Model Predictive Control based on Visual Servoing of Evolving Features</title><author>Aspragkathos, Sotirios N ; Rousseas, Panagiotis ; Karras, George C ; Kyriakopoulos, Kostas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31101257233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamic models</topic><topic>Moving targets</topic><topic>Nonlinear control</topic><topic>Predictive control</topic><topic>Real variables</topic><topic>Safety management</topic><topic>Servocontrol</topic><topic>Tracking</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Aspragkathos, Sotirios N</creatorcontrib><creatorcontrib>Rousseas, Panagiotis</creatorcontrib><creatorcontrib>Karras, George C</creatorcontrib><creatorcontrib>Kyriakopoulos, Kostas J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aspragkathos, Sotirios N</au><au>Rousseas, Panagiotis</au><au>Karras, George C</au><au>Kyriakopoulos, Kostas J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multirotor Nonlinear Model Predictive Control based on Visual Servoing of Evolving Features</atitle><jtitle>arXiv.org</jtitle><date>2024-09-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This article presents a Visual Servoing Nonlinear Model Predictive Control (NMPC) scheme for autonomously tracking a moving target using multirotor Unmanned Aerial Vehicles (UAVs). The scheme is developed for surveillance and tracking of contour-based areas with evolving features. NMPC is used to manage input and state constraints, while additional barrier functions are incorporated in order to ensure system safety and optimal performance. The proposed control scheme is designed based on the extraction and implementation of the full dynamic model of the features describing the target and the state variables. Real-time simulations and experiments using a quadrotor UAV equipped with a camera demonstrate the effectiveness of the proposed strategy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3110125723
source ProQuest - Publicly Available Content Database
subjects Dynamic models
Moving targets
Nonlinear control
Predictive control
Real variables
Safety management
Servocontrol
Tracking
Unmanned aerial vehicles
title Multirotor Nonlinear Model Predictive Control based on Visual Servoing of Evolving Features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multirotor%20Nonlinear%20Model%20Predictive%20Control%20based%20on%20Visual%20Servoing%20of%20Evolving%20Features&rft.jtitle=arXiv.org&rft.au=Aspragkathos,%20Sotirios%20N&rft.date=2024-09-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3110125723%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31101257233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110125723&rft_id=info:pmid/&rfr_iscdi=true