Loading…
Terahertz spectroscopy from air plasmas created by two-color femtosecond laser pulses: The ALTESSE project
Terahertz pulses are very popular because of their numerous applications, for example in security. Located between microwaves and optical waves in the electromagnetic spectrum, their spectral domain can now be exploited for molecular spectroscopy using terahertz emission from plasmas formed by femto...
Saved in:
Published in: | Europhysics letters 2019-04, Vol.126 (2), p.24001 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Terahertz pulses are very popular because of their numerous applications, for example in security. Located between microwaves and optical waves in the electromagnetic spectrum, their spectral domain can now be exploited for molecular spectroscopy using terahertz emission from plasmas formed by femtosecond laser pulses ionizing gases such as air. Downconversion of broadband optical spectra in a plasma produces intense radiation suitable for the detection of suspect materials remotely. The different physical mechanisms involved to create terahertz radiation by laser-matter interaction are reviewed. The new potentialities offered by intense ultrafast lasers allow the acquisition of unique spectral signatures characterizing various materials. |
---|---|
ISSN: | 0295-5075 1286-4854 1286-4854 |
DOI: | 10.1209/0295-5075/126/24001 |