Loading…

Novel Power-Efficient Fast-Locking Phase-Locked Loop Based on Adaptive Time-to-Digital Converter-Aided Acceleration Compensation Technology

This paper proposes an adaptive acceleration lock compensation technology for phase-locked loops (PLLs) based on a novel dual-mode programmable ring voltage-controlled oscillator (ring-VCO). In addition, a time-to-digital converter (TDC) is designed to accurately quantify the phase difference from t...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-09, Vol.13 (18), p.3586
Main Authors: Sun, Ligong, Luo, Yixin, Deng, Zhiyao, Wang, Jinchan, Liu, Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes an adaptive acceleration lock compensation technology for phase-locked loops (PLLs) based on a novel dual-mode programmable ring voltage-controlled oscillator (ring-VCO). In addition, a time-to-digital converter (TDC) is designed to accurately quantify the phase difference from the phase frequency detector (PFD) in order to optimize the dead-zone effect while dynamically switching an auxiliary charge pump (CP) module to realize fast phase locking. Furthermore, a TDC-controlled three/five-stage dual-mode adaptively continuously switched VCO is proposed to optimize the phase noise (PN) and power efficiency, leading to an optimal performance tradeoff of the PLL. Based on the 180 nm/1.8 V standard CMOS technology, the complete PLL design and a corresponding simulation analysis are implemented. The results show that, with a 1 GHz reference signal as the input, the output frequency is 50–324 MHz, with a wide tuning range of 260 MHz and a low phase noise of −98.07 dBc/Hz@1 MHz. The key phase-locking time is reduced to 1.11 μs, and the power dissipation is lowered to 1.86 mW with a layout area of 66 μm × 128 μm. A significantly remarkable multiobjective performance tradeoff with topology optimization is realized, which is in contrast to several similar design cases of PLLs.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13183586