Loading…

Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives

Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address th...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-09, Vol.13 (18), p.3599
Main Authors: Liu, Suyao, Xu, Chunmei, Zhang, Yifei, Pei, Haoying, Dong, Kan, Yang, Ning, Ma, Yingtao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3
container_end_page
container_issue 18
container_start_page 3599
container_title Electronics (Basel)
container_volume 13
creator Liu, Suyao
Xu, Chunmei
Zhang, Yifei
Pei, Haoying
Dong, Kan
Yang, Ning
Ma, Yingtao
description Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues, this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First, the power and energy requirements of the vehicle are determined through traction calculations, and a real-time energy management strategy is used to ensure efficient power distribution. On this basis, a multi-objective parameter configuration optimization model is developed, which comprehensively considers economic cost and system weight, and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13%, respectively, compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.
doi_str_mv 10.3390/electronics13183599
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110458959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810659457</galeid><sourcerecordid>A810659457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3</originalsourceid><addsrcrecordid>eNptUbFOwzAQjRBIVNAvYLHEnGLHSWyPVUQpUlErAXPkOOfKVRIX2wGVr8dVGBi4G-7u6b13w0uSO4IXlAr8AB2o4OxglCeUcFoIcZHMMsxEKjKRXf7Zr5O59wccSxDKKZ4lw8vYBZNum0M0MZ-AdtLJHgI4VNlBm_3oZDB2QNtjML35ng6r0frUOruHAa1G6FAFXRehxpkW7exXVL-efIAeaevQxirb27O7v02utOw8zH_nTfK-enyr1ulm-_RcLTepynIS0pbqjHEGjJeqwKwRGkSumxLnsmyASZU3lGeSQiszknOtFMG6xIAzoZVmkt4k95Pv0dmPEXyoD3Z0Q3xZU0JwXnBRiMhaTKy97KA2g7bBSRW7hd4oO4A2EV9ygstC5AWLAjoJlLPeO9D10ZleulNNcH0Oo_4nDPoDAxiCIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110458959</pqid></control><display><type>article</type><title>Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives</title><source>Publicly Available Content Database</source><creator>Liu, Suyao ; Xu, Chunmei ; Zhang, Yifei ; Pei, Haoying ; Dong, Kan ; Yang, Ning ; Ma, Yingtao</creator><creatorcontrib>Liu, Suyao ; Xu, Chunmei ; Zhang, Yifei ; Pei, Haoying ; Dong, Kan ; Yang, Ning ; Ma, Yingtao</creatorcontrib><description>Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues, this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First, the power and energy requirements of the vehicle are determined through traction calculations, and a real-time energy management strategy is used to ensure efficient power distribution. On this basis, a multi-objective parameter configuration optimization model is developed, which comprehensively considers economic cost and system weight, and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13%, respectively, compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13183599</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Batteries ; Configuration management ; Costs ; Economic impact ; Energy consumption ; Energy distribution ; Energy efficiency ; Energy industry ; Energy management ; Energy management systems ; Energy requirements ; Energy storage ; Equipment and supplies ; Fuel cell industry ; Fuel cells ; Hybrid systems ; Hydrogen ; Hydrogen as fuel ; Hydrogen fuels ; Lithium ; Mathematical optimization ; Multiple objective analysis ; Optimization ; Optimization models ; Parameters ; Particle swarm optimization ; Power sources ; Power supply ; Railroads ; Real time ; Strategic planning (Business) ; Trains ; Vehicles</subject><ispartof>Electronics (Basel), 2024-09, Vol.13 (18), p.3599</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3</cites><orcidid>0000-0003-2136-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110458959/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110458959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Liu, Suyao</creatorcontrib><creatorcontrib>Xu, Chunmei</creatorcontrib><creatorcontrib>Zhang, Yifei</creatorcontrib><creatorcontrib>Pei, Haoying</creatorcontrib><creatorcontrib>Dong, Kan</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Ma, Yingtao</creatorcontrib><title>Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives</title><title>Electronics (Basel)</title><description>Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues, this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First, the power and energy requirements of the vehicle are determined through traction calculations, and a real-time energy management strategy is used to ensure efficient power distribution. On this basis, a multi-objective parameter configuration optimization model is developed, which comprehensively considers economic cost and system weight, and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13%, respectively, compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Batteries</subject><subject>Configuration management</subject><subject>Costs</subject><subject>Economic impact</subject><subject>Energy consumption</subject><subject>Energy distribution</subject><subject>Energy efficiency</subject><subject>Energy industry</subject><subject>Energy management</subject><subject>Energy management systems</subject><subject>Energy requirements</subject><subject>Energy storage</subject><subject>Equipment and supplies</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Hybrid systems</subject><subject>Hydrogen</subject><subject>Hydrogen as fuel</subject><subject>Hydrogen fuels</subject><subject>Lithium</subject><subject>Mathematical optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Power sources</subject><subject>Power supply</subject><subject>Railroads</subject><subject>Real time</subject><subject>Strategic planning (Business)</subject><subject>Trains</subject><subject>Vehicles</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUbFOwzAQjRBIVNAvYLHEnGLHSWyPVUQpUlErAXPkOOfKVRIX2wGVr8dVGBi4G-7u6b13w0uSO4IXlAr8AB2o4OxglCeUcFoIcZHMMsxEKjKRXf7Zr5O59wccSxDKKZ4lw8vYBZNum0M0MZ-AdtLJHgI4VNlBm_3oZDB2QNtjML35ng6r0frUOruHAa1G6FAFXRehxpkW7exXVL-efIAeaevQxirb27O7v02utOw8zH_nTfK-enyr1ulm-_RcLTepynIS0pbqjHEGjJeqwKwRGkSumxLnsmyASZU3lGeSQiszknOtFMG6xIAzoZVmkt4k95Pv0dmPEXyoD3Z0Q3xZU0JwXnBRiMhaTKy97KA2g7bBSRW7hd4oO4A2EV9ygstC5AWLAjoJlLPeO9D10ZleulNNcH0Oo_4nDPoDAxiCIg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Suyao</creator><creator>Xu, Chunmei</creator><creator>Zhang, Yifei</creator><creator>Pei, Haoying</creator><creator>Dong, Kan</creator><creator>Yang, Ning</creator><creator>Ma, Yingtao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2136-7509</orcidid></search><sort><creationdate>20240901</creationdate><title>Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives</title><author>Liu, Suyao ; Xu, Chunmei ; Zhang, Yifei ; Pei, Haoying ; Dong, Kan ; Yang, Ning ; Ma, Yingtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Batteries</topic><topic>Configuration management</topic><topic>Costs</topic><topic>Economic impact</topic><topic>Energy consumption</topic><topic>Energy distribution</topic><topic>Energy efficiency</topic><topic>Energy industry</topic><topic>Energy management</topic><topic>Energy management systems</topic><topic>Energy requirements</topic><topic>Energy storage</topic><topic>Equipment and supplies</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Hybrid systems</topic><topic>Hydrogen</topic><topic>Hydrogen as fuel</topic><topic>Hydrogen fuels</topic><topic>Lithium</topic><topic>Mathematical optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Power sources</topic><topic>Power supply</topic><topic>Railroads</topic><topic>Real time</topic><topic>Strategic planning (Business)</topic><topic>Trains</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Suyao</creatorcontrib><creatorcontrib>Xu, Chunmei</creatorcontrib><creatorcontrib>Zhang, Yifei</creatorcontrib><creatorcontrib>Pei, Haoying</creatorcontrib><creatorcontrib>Dong, Kan</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Ma, Yingtao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Suyao</au><au>Xu, Chunmei</au><au>Zhang, Yifei</au><au>Pei, Haoying</au><au>Dong, Kan</au><au>Yang, Ning</au><au>Ma, Yingtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>13</volume><issue>18</issue><spage>3599</spage><pages>3599-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues, this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First, the power and energy requirements of the vehicle are determined through traction calculations, and a real-time energy management strategy is used to ensure efficient power distribution. On this basis, a multi-objective parameter configuration optimization model is developed, which comprehensively considers economic cost and system weight, and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13%, respectively, compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13183599</doi><orcidid>https://orcid.org/0000-0003-2136-7509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-09, Vol.13 (18), p.3599
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3110458959
source Publicly Available Content Database
subjects Algorithms
Analysis
Batteries
Configuration management
Costs
Economic impact
Energy consumption
Energy distribution
Energy efficiency
Energy industry
Energy management
Energy management systems
Energy requirements
Energy storage
Equipment and supplies
Fuel cell industry
Fuel cells
Hybrid systems
Hydrogen
Hydrogen as fuel
Hydrogen fuels
Lithium
Mathematical optimization
Multiple objective analysis
Optimization
Optimization models
Parameters
Particle swarm optimization
Power sources
Power supply
Railroads
Real time
Strategic planning (Business)
Trains
Vehicles
title Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Parameter%20Configuration%20Optimization%20of%20Hydrogen%20Fuel%20Cell%20Hybrid%20Power%20System%20for%20Locomotives&rft.jtitle=Electronics%20(Basel)&rft.au=Liu,%20Suyao&rft.date=2024-09-01&rft.volume=13&rft.issue=18&rft.spage=3599&rft.pages=3599-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13183599&rft_dat=%3Cgale_proqu%3EA810659457%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110458959&rft_id=info:pmid/&rft_galeid=A810659457&rfr_iscdi=true