Loading…
Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives
Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address th...
Saved in:
Published in: | Electronics (Basel) 2024-09, Vol.13 (18), p.3599 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3 |
container_end_page | |
container_issue | 18 |
container_start_page | 3599 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Liu, Suyao Xu, Chunmei Zhang, Yifei Pei, Haoying Dong, Kan Yang, Ning Ma, Yingtao |
description | Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues, this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First, the power and energy requirements of the vehicle are determined through traction calculations, and a real-time energy management strategy is used to ensure efficient power distribution. On this basis, a multi-objective parameter configuration optimization model is developed, which comprehensively considers economic cost and system weight, and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13%, respectively, compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS. |
doi_str_mv | 10.3390/electronics13183599 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110458959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810659457</galeid><sourcerecordid>A810659457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3</originalsourceid><addsrcrecordid>eNptUbFOwzAQjRBIVNAvYLHEnGLHSWyPVUQpUlErAXPkOOfKVRIX2wGVr8dVGBi4G-7u6b13w0uSO4IXlAr8AB2o4OxglCeUcFoIcZHMMsxEKjKRXf7Zr5O59wccSxDKKZ4lw8vYBZNum0M0MZ-AdtLJHgI4VNlBm_3oZDB2QNtjML35ng6r0frUOruHAa1G6FAFXRehxpkW7exXVL-efIAeaevQxirb27O7v02utOw8zH_nTfK-enyr1ulm-_RcLTepynIS0pbqjHEGjJeqwKwRGkSumxLnsmyASZU3lGeSQiszknOtFMG6xIAzoZVmkt4k95Pv0dmPEXyoD3Z0Q3xZU0JwXnBRiMhaTKy97KA2g7bBSRW7hd4oO4A2EV9ygstC5AWLAjoJlLPeO9D10ZleulNNcH0Oo_4nDPoDAxiCIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110458959</pqid></control><display><type>article</type><title>Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives</title><source>Publicly Available Content Database</source><creator>Liu, Suyao ; Xu, Chunmei ; Zhang, Yifei ; Pei, Haoying ; Dong, Kan ; Yang, Ning ; Ma, Yingtao</creator><creatorcontrib>Liu, Suyao ; Xu, Chunmei ; Zhang, Yifei ; Pei, Haoying ; Dong, Kan ; Yang, Ning ; Ma, Yingtao</creatorcontrib><description>Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues, this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First, the power and energy requirements of the vehicle are determined through traction calculations, and a real-time energy management strategy is used to ensure efficient power distribution. On this basis, a multi-objective parameter configuration optimization model is developed, which comprehensively considers economic cost and system weight, and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13%, respectively, compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13183599</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Batteries ; Configuration management ; Costs ; Economic impact ; Energy consumption ; Energy distribution ; Energy efficiency ; Energy industry ; Energy management ; Energy management systems ; Energy requirements ; Energy storage ; Equipment and supplies ; Fuel cell industry ; Fuel cells ; Hybrid systems ; Hydrogen ; Hydrogen as fuel ; Hydrogen fuels ; Lithium ; Mathematical optimization ; Multiple objective analysis ; Optimization ; Optimization models ; Parameters ; Particle swarm optimization ; Power sources ; Power supply ; Railroads ; Real time ; Strategic planning (Business) ; Trains ; Vehicles</subject><ispartof>Electronics (Basel), 2024-09, Vol.13 (18), p.3599</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3</cites><orcidid>0000-0003-2136-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110458959/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110458959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Liu, Suyao</creatorcontrib><creatorcontrib>Xu, Chunmei</creatorcontrib><creatorcontrib>Zhang, Yifei</creatorcontrib><creatorcontrib>Pei, Haoying</creatorcontrib><creatorcontrib>Dong, Kan</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Ma, Yingtao</creatorcontrib><title>Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives</title><title>Electronics (Basel)</title><description>Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues, this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First, the power and energy requirements of the vehicle are determined through traction calculations, and a real-time energy management strategy is used to ensure efficient power distribution. On this basis, a multi-objective parameter configuration optimization model is developed, which comprehensively considers economic cost and system weight, and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13%, respectively, compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Batteries</subject><subject>Configuration management</subject><subject>Costs</subject><subject>Economic impact</subject><subject>Energy consumption</subject><subject>Energy distribution</subject><subject>Energy efficiency</subject><subject>Energy industry</subject><subject>Energy management</subject><subject>Energy management systems</subject><subject>Energy requirements</subject><subject>Energy storage</subject><subject>Equipment and supplies</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Hybrid systems</subject><subject>Hydrogen</subject><subject>Hydrogen as fuel</subject><subject>Hydrogen fuels</subject><subject>Lithium</subject><subject>Mathematical optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Power sources</subject><subject>Power supply</subject><subject>Railroads</subject><subject>Real time</subject><subject>Strategic planning (Business)</subject><subject>Trains</subject><subject>Vehicles</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUbFOwzAQjRBIVNAvYLHEnGLHSWyPVUQpUlErAXPkOOfKVRIX2wGVr8dVGBi4G-7u6b13w0uSO4IXlAr8AB2o4OxglCeUcFoIcZHMMsxEKjKRXf7Zr5O59wccSxDKKZ4lw8vYBZNum0M0MZ-AdtLJHgI4VNlBm_3oZDB2QNtjML35ng6r0frUOruHAa1G6FAFXRehxpkW7exXVL-efIAeaevQxirb27O7v02utOw8zH_nTfK-enyr1ulm-_RcLTepynIS0pbqjHEGjJeqwKwRGkSumxLnsmyASZU3lGeSQiszknOtFMG6xIAzoZVmkt4k95Pv0dmPEXyoD3Z0Q3xZU0JwXnBRiMhaTKy97KA2g7bBSRW7hd4oO4A2EV9ygstC5AWLAjoJlLPeO9D10ZleulNNcH0Oo_4nDPoDAxiCIg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Suyao</creator><creator>Xu, Chunmei</creator><creator>Zhang, Yifei</creator><creator>Pei, Haoying</creator><creator>Dong, Kan</creator><creator>Yang, Ning</creator><creator>Ma, Yingtao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2136-7509</orcidid></search><sort><creationdate>20240901</creationdate><title>Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives</title><author>Liu, Suyao ; Xu, Chunmei ; Zhang, Yifei ; Pei, Haoying ; Dong, Kan ; Yang, Ning ; Ma, Yingtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Batteries</topic><topic>Configuration management</topic><topic>Costs</topic><topic>Economic impact</topic><topic>Energy consumption</topic><topic>Energy distribution</topic><topic>Energy efficiency</topic><topic>Energy industry</topic><topic>Energy management</topic><topic>Energy management systems</topic><topic>Energy requirements</topic><topic>Energy storage</topic><topic>Equipment and supplies</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Hybrid systems</topic><topic>Hydrogen</topic><topic>Hydrogen as fuel</topic><topic>Hydrogen fuels</topic><topic>Lithium</topic><topic>Mathematical optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Power sources</topic><topic>Power supply</topic><topic>Railroads</topic><topic>Real time</topic><topic>Strategic planning (Business)</topic><topic>Trains</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Suyao</creatorcontrib><creatorcontrib>Xu, Chunmei</creatorcontrib><creatorcontrib>Zhang, Yifei</creatorcontrib><creatorcontrib>Pei, Haoying</creatorcontrib><creatorcontrib>Dong, Kan</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Ma, Yingtao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Suyao</au><au>Xu, Chunmei</au><au>Zhang, Yifei</au><au>Pei, Haoying</au><au>Dong, Kan</au><au>Yang, Ning</au><au>Ma, Yingtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>13</volume><issue>18</issue><spage>3599</spage><pages>3599-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience, which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues, this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First, the power and energy requirements of the vehicle are determined through traction calculations, and a real-time energy management strategy is used to ensure efficient power distribution. On this basis, a multi-objective parameter configuration optimization model is developed, which comprehensively considers economic cost and system weight, and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13%, respectively, compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13183599</doi><orcidid>https://orcid.org/0000-0003-2136-7509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-09, Vol.13 (18), p.3599 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3110458959 |
source | Publicly Available Content Database |
subjects | Algorithms Analysis Batteries Configuration management Costs Economic impact Energy consumption Energy distribution Energy efficiency Energy industry Energy management Energy management systems Energy requirements Energy storage Equipment and supplies Fuel cell industry Fuel cells Hybrid systems Hydrogen Hydrogen as fuel Hydrogen fuels Lithium Mathematical optimization Multiple objective analysis Optimization Optimization models Parameters Particle swarm optimization Power sources Power supply Railroads Real time Strategic planning (Business) Trains Vehicles |
title | Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Parameter%20Configuration%20Optimization%20of%20Hydrogen%20Fuel%20Cell%20Hybrid%20Power%20System%20for%20Locomotives&rft.jtitle=Electronics%20(Basel)&rft.au=Liu,%20Suyao&rft.date=2024-09-01&rft.volume=13&rft.issue=18&rft.spage=3599&rft.pages=3599-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13183599&rft_dat=%3Cgale_proqu%3EA810659457%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-d3f2787e786c507b9fe94fb604a6be7ac4b382a3eda2148fcc10f60e029fcf7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110458959&rft_id=info:pmid/&rft_galeid=A810659457&rfr_iscdi=true |