Loading…
Minimizing Live Experiments in Recommender Systems: User Simulation to Evaluate Preference Elicitation Policies
Evaluation of policies in recommender systems typically involves A/B testing using live experiments on real users to assess a new policy's impact on relevant metrics. This ``gold standard'' comes at a high cost, however, in terms of cycle time, user cost, and potential user retention....
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hsu, Chih-Wei Mladenov, Martin Meshi, Ofer Pine, James Pham, Hubert Li, Shane Liang, Xujian Polishko, Anton Yang, Li Scheetz, Ben Boutilier, Craig |
description | Evaluation of policies in recommender systems typically involves A/B testing using live experiments on real users to assess a new policy's impact on relevant metrics. This ``gold standard'' comes at a high cost, however, in terms of cycle time, user cost, and potential user retention. In developing policies for ``onboarding'' new users, these costs can be especially problematic, since on-boarding occurs only once. In this work, we describe a simulation methodology used to augment (and reduce) the use of live experiments. We illustrate its deployment for the evaluation of ``preference elicitation'' algorithms used to onboard new users of the YouTube Music platform. By developing counterfactually robust user behavior models, and a simulation service that couples such models with production infrastructure, we are able to test new algorithms in a way that reliably predicts their performance on key metrics when deployed live. We describe our domain, our simulation models and platform, results of experiments and deployment, and suggest future steps needed to further realistic simulation as a powerful complement to live experiments. |
doi_str_mv | 10.48550/arxiv.2409.17436 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3110540349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110540349</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-5c0d36f58e28c18b98e916421f22d0887ca487e706251e460cc521c68c4afb263</originalsourceid><addsrcrecordid>eNotjc1KAzEYRYMgWGofwF3A9dTky89k3EmpP1CxaF2XNP1GUmaSOskM1ae3pa4uBy7nEHLD2VQapdid7Q5-mIJk1ZSXUugLMgIheGEkwBWZpLRjjIEuQSkxIvHVB9_6Xx--6MIPSOeHPXa-xZAT9YG-o4vtkbbY0Y-flLFN9_Qznci3fWOzj4HmSOeDbXqbkS47rLHD4I6qxjufz5dlPAGma3JZ2ybh5H_HZPU4X82ei8Xb08vsYVFYBVWhHNsKXSuDYBw3m8pgxbUEXgNsmTGls9KUWDINiqPUzDkF3GnjpK03oMWY3J61-y5-95jyehf7LhyLa8E5U5IJWYk_YoBb0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110540349</pqid></control><display><type>article</type><title>Minimizing Live Experiments in Recommender Systems: User Simulation to Evaluate Preference Elicitation Policies</title><source>Publicly Available Content Database</source><creator>Hsu, Chih-Wei ; Mladenov, Martin ; Meshi, Ofer ; Pine, James ; Pham, Hubert ; Li, Shane ; Liang, Xujian ; Polishko, Anton ; Yang, Li ; Scheetz, Ben ; Boutilier, Craig</creator><creatorcontrib>Hsu, Chih-Wei ; Mladenov, Martin ; Meshi, Ofer ; Pine, James ; Pham, Hubert ; Li, Shane ; Liang, Xujian ; Polishko, Anton ; Yang, Li ; Scheetz, Ben ; Boutilier, Craig</creatorcontrib><description>Evaluation of policies in recommender systems typically involves A/B testing using live experiments on real users to assess a new policy's impact on relevant metrics. This ``gold standard'' comes at a high cost, however, in terms of cycle time, user cost, and potential user retention. In developing policies for ``onboarding'' new users, these costs can be especially problematic, since on-boarding occurs only once. In this work, we describe a simulation methodology used to augment (and reduce) the use of live experiments. We illustrate its deployment for the evaluation of ``preference elicitation'' algorithms used to onboard new users of the YouTube Music platform. By developing counterfactually robust user behavior models, and a simulation service that couples such models with production infrastructure, we are able to test new algorithms in a way that reliably predicts their performance on key metrics when deployed live. We describe our domain, our simulation models and platform, results of experiments and deployment, and suggest future steps needed to further realistic simulation as a powerful complement to live experiments.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2409.17436</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cycle time ; Experiments ; Policies ; Recommender systems ; Simulation ; Simulation models ; Systems analysis ; User behavior</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3110540349?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Hsu, Chih-Wei</creatorcontrib><creatorcontrib>Mladenov, Martin</creatorcontrib><creatorcontrib>Meshi, Ofer</creatorcontrib><creatorcontrib>Pine, James</creatorcontrib><creatorcontrib>Pham, Hubert</creatorcontrib><creatorcontrib>Li, Shane</creatorcontrib><creatorcontrib>Liang, Xujian</creatorcontrib><creatorcontrib>Polishko, Anton</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Scheetz, Ben</creatorcontrib><creatorcontrib>Boutilier, Craig</creatorcontrib><title>Minimizing Live Experiments in Recommender Systems: User Simulation to Evaluate Preference Elicitation Policies</title><title>arXiv.org</title><description>Evaluation of policies in recommender systems typically involves A/B testing using live experiments on real users to assess a new policy's impact on relevant metrics. This ``gold standard'' comes at a high cost, however, in terms of cycle time, user cost, and potential user retention. In developing policies for ``onboarding'' new users, these costs can be especially problematic, since on-boarding occurs only once. In this work, we describe a simulation methodology used to augment (and reduce) the use of live experiments. We illustrate its deployment for the evaluation of ``preference elicitation'' algorithms used to onboard new users of the YouTube Music platform. By developing counterfactually robust user behavior models, and a simulation service that couples such models with production infrastructure, we are able to test new algorithms in a way that reliably predicts their performance on key metrics when deployed live. We describe our domain, our simulation models and platform, results of experiments and deployment, and suggest future steps needed to further realistic simulation as a powerful complement to live experiments.</description><subject>Algorithms</subject><subject>Cycle time</subject><subject>Experiments</subject><subject>Policies</subject><subject>Recommender systems</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Systems analysis</subject><subject>User behavior</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1KAzEYRYMgWGofwF3A9dTky89k3EmpP1CxaF2XNP1GUmaSOskM1ae3pa4uBy7nEHLD2VQapdid7Q5-mIJk1ZSXUugLMgIheGEkwBWZpLRjjIEuQSkxIvHVB9_6Xx--6MIPSOeHPXa-xZAT9YG-o4vtkbbY0Y-flLFN9_Qznci3fWOzj4HmSOeDbXqbkS47rLHD4I6qxjufz5dlPAGma3JZ2ybh5H_HZPU4X82ei8Xb08vsYVFYBVWhHNsKXSuDYBw3m8pgxbUEXgNsmTGls9KUWDINiqPUzDkF3GnjpK03oMWY3J61-y5-95jyehf7LhyLa8E5U5IJWYk_YoBb0g</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Hsu, Chih-Wei</creator><creator>Mladenov, Martin</creator><creator>Meshi, Ofer</creator><creator>Pine, James</creator><creator>Pham, Hubert</creator><creator>Li, Shane</creator><creator>Liang, Xujian</creator><creator>Polishko, Anton</creator><creator>Yang, Li</creator><creator>Scheetz, Ben</creator><creator>Boutilier, Craig</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240926</creationdate><title>Minimizing Live Experiments in Recommender Systems: User Simulation to Evaluate Preference Elicitation Policies</title><author>Hsu, Chih-Wei ; Mladenov, Martin ; Meshi, Ofer ; Pine, James ; Pham, Hubert ; Li, Shane ; Liang, Xujian ; Polishko, Anton ; Yang, Li ; Scheetz, Ben ; Boutilier, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-5c0d36f58e28c18b98e916421f22d0887ca487e706251e460cc521c68c4afb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cycle time</topic><topic>Experiments</topic><topic>Policies</topic><topic>Recommender systems</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Systems analysis</topic><topic>User behavior</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chih-Wei</creatorcontrib><creatorcontrib>Mladenov, Martin</creatorcontrib><creatorcontrib>Meshi, Ofer</creatorcontrib><creatorcontrib>Pine, James</creatorcontrib><creatorcontrib>Pham, Hubert</creatorcontrib><creatorcontrib>Li, Shane</creatorcontrib><creatorcontrib>Liang, Xujian</creatorcontrib><creatorcontrib>Polishko, Anton</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Scheetz, Ben</creatorcontrib><creatorcontrib>Boutilier, Craig</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chih-Wei</au><au>Mladenov, Martin</au><au>Meshi, Ofer</au><au>Pine, James</au><au>Pham, Hubert</au><au>Li, Shane</au><au>Liang, Xujian</au><au>Polishko, Anton</au><au>Yang, Li</au><au>Scheetz, Ben</au><au>Boutilier, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing Live Experiments in Recommender Systems: User Simulation to Evaluate Preference Elicitation Policies</atitle><jtitle>arXiv.org</jtitle><date>2024-09-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Evaluation of policies in recommender systems typically involves A/B testing using live experiments on real users to assess a new policy's impact on relevant metrics. This ``gold standard'' comes at a high cost, however, in terms of cycle time, user cost, and potential user retention. In developing policies for ``onboarding'' new users, these costs can be especially problematic, since on-boarding occurs only once. In this work, we describe a simulation methodology used to augment (and reduce) the use of live experiments. We illustrate its deployment for the evaluation of ``preference elicitation'' algorithms used to onboard new users of the YouTube Music platform. By developing counterfactually robust user behavior models, and a simulation service that couples such models with production infrastructure, we are able to test new algorithms in a way that reliably predicts their performance on key metrics when deployed live. We describe our domain, our simulation models and platform, results of experiments and deployment, and suggest future steps needed to further realistic simulation as a powerful complement to live experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2409.17436</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3110540349 |
source | Publicly Available Content Database |
subjects | Algorithms Cycle time Experiments Policies Recommender systems Simulation Simulation models Systems analysis User behavior |
title | Minimizing Live Experiments in Recommender Systems: User Simulation to Evaluate Preference Elicitation Policies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20Live%20Experiments%20in%20Recommender%20Systems:%20User%20Simulation%20to%20Evaluate%20Preference%20Elicitation%20Policies&rft.jtitle=arXiv.org&rft.au=Hsu,%20Chih-Wei&rft.date=2024-09-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2409.17436&rft_dat=%3Cproquest%3E3110540349%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-5c0d36f58e28c18b98e916421f22d0887ca487e706251e460cc521c68c4afb263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110540349&rft_id=info:pmid/&rfr_iscdi=true |