Loading…

Deep learning for prediction of cardiomegaly using chest X-rays

In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) mea...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2024-11, Vol.36 (31), p.19383-19391
Main Authors: Gupta, Mrigakshi, Singh, Akash, Kumar, Yatender
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1156-f41b3545a62f63c6e843b8a922386dbd73f6e566c21e68997ad21997e9278f743
container_end_page 19391
container_issue 31
container_start_page 19383
container_title Neural computing & applications
container_volume 36
creator Gupta, Mrigakshi
Singh, Akash
Kumar, Yatender
description In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) measurement in chest X-ray scans. Cardiomegaly is a serious cardiac condition that can lead to life-threatening complications if left undiagnosed. The proposed method involves segmenting the heart from a chest CT scan using a convolutional neural network model, ResNet-18, and calculating the CT ratio, which is the ratio of the maximum width of the heart to the maximum width of the thoracic cage. Studies have shown that increasing CT ratio leads to an increasing risk of heart diseases. Hence, a need to monitor the CT ratio for every individual arises, for if the ratio changes, an alert to take precautions can be rang. The method is evaluated using a dataset of 490 chest X-ray scans, and it achieves an accuracy of 80% and a precision of 84%. The integration of CT ratio measurement in chest X-ray scan reports has the potential to aid in the early detection and diagnosis of cardiomegaly, allowing for prompt medical intervention and improving patient outcomes.
doi_str_mv 10.1007/s00521-024-10190-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110546597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110546597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1156-f41b3545a62f63c6e843b8a922386dbd73f6e566c21e68997ad21997e9278f743</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmOclKpD6h4EbBXUgzSZ3STsakXfTfmzqCO1dncb9zLnwIXVK4pgDNTQGQjBJgglCgBog6QhMqOCccpD5GEzCinpXgp-islBUACKXlBN3ehzDgdXC57_oljinjIYe289su9ThF7F1uu7QJS7fe4105QP4zlC3-INntyzk6iW5dwsVvTtH748Pb7JnMX59eZndz4imVikRBF1wK6RSLinsVtOAL7QxjXKt20TY8qiCV8owGpY1pXMtojWBYo2Mj-BRdjbtDTl-7-t-u0i739aXllIIUSpqmUmykfE6l5BDtkLuNy3tLwR5E2VGUraLsjyiraomPpVLhfhny3_Q_rW9CMmk3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110546597</pqid></control><display><type>article</type><title>Deep learning for prediction of cardiomegaly using chest X-rays</title><source>Springer Link</source><creator>Gupta, Mrigakshi ; Singh, Akash ; Kumar, Yatender</creator><creatorcontrib>Gupta, Mrigakshi ; Singh, Akash ; Kumar, Yatender</creatorcontrib><description>In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) measurement in chest X-ray scans. Cardiomegaly is a serious cardiac condition that can lead to life-threatening complications if left undiagnosed. The proposed method involves segmenting the heart from a chest CT scan using a convolutional neural network model, ResNet-18, and calculating the CT ratio, which is the ratio of the maximum width of the heart to the maximum width of the thoracic cage. Studies have shown that increasing CT ratio leads to an increasing risk of heart diseases. Hence, a need to monitor the CT ratio for every individual arises, for if the ratio changes, an alert to take precautions can be rang. The method is evaluated using a dataset of 490 chest X-ray scans, and it achieves an accuracy of 80% and a precision of 84%. The integration of CT ratio measurement in chest X-ray scan reports has the potential to aid in the early detection and diagnosis of cardiomegaly, allowing for prompt medical intervention and improving patient outcomes.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-10190-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Chest ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computed tomography ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Diagnosis ; Heart diseases ; Image Processing and Computer Vision ; Medical imaging ; Original Article ; Probability and Statistics in Computer Science ; X-rays</subject><ispartof>Neural computing &amp; applications, 2024-11, Vol.36 (31), p.19383-19391</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1156-f41b3545a62f63c6e843b8a922386dbd73f6e566c21e68997ad21997e9278f743</cites><orcidid>0000-0002-9835-9892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gupta, Mrigakshi</creatorcontrib><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Kumar, Yatender</creatorcontrib><title>Deep learning for prediction of cardiomegaly using chest X-rays</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) measurement in chest X-ray scans. Cardiomegaly is a serious cardiac condition that can lead to life-threatening complications if left undiagnosed. The proposed method involves segmenting the heart from a chest CT scan using a convolutional neural network model, ResNet-18, and calculating the CT ratio, which is the ratio of the maximum width of the heart to the maximum width of the thoracic cage. Studies have shown that increasing CT ratio leads to an increasing risk of heart diseases. Hence, a need to monitor the CT ratio for every individual arises, for if the ratio changes, an alert to take precautions can be rang. The method is evaluated using a dataset of 490 chest X-ray scans, and it achieves an accuracy of 80% and a precision of 84%. The integration of CT ratio measurement in chest X-ray scan reports has the potential to aid in the early detection and diagnosis of cardiomegaly, allowing for prompt medical intervention and improving patient outcomes.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Chest</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Heart diseases</subject><subject>Image Processing and Computer Vision</subject><subject>Medical imaging</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>X-rays</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmOclKpD6h4EbBXUgzSZ3STsakXfTfmzqCO1dncb9zLnwIXVK4pgDNTQGQjBJgglCgBog6QhMqOCccpD5GEzCinpXgp-islBUACKXlBN3ehzDgdXC57_oljinjIYe289su9ThF7F1uu7QJS7fe4105QP4zlC3-INntyzk6iW5dwsVvTtH748Pb7JnMX59eZndz4imVikRBF1wK6RSLinsVtOAL7QxjXKt20TY8qiCV8owGpY1pXMtojWBYo2Mj-BRdjbtDTl-7-t-u0i739aXllIIUSpqmUmykfE6l5BDtkLuNy3tLwR5E2VGUraLsjyiraomPpVLhfhny3_Q_rW9CMmk3</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Gupta, Mrigakshi</creator><creator>Singh, Akash</creator><creator>Kumar, Yatender</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9835-9892</orcidid></search><sort><creationdate>20241101</creationdate><title>Deep learning for prediction of cardiomegaly using chest X-rays</title><author>Gupta, Mrigakshi ; Singh, Akash ; Kumar, Yatender</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1156-f41b3545a62f63c6e843b8a922386dbd73f6e566c21e68997ad21997e9278f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Chest</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Heart diseases</topic><topic>Image Processing and Computer Vision</topic><topic>Medical imaging</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Mrigakshi</creatorcontrib><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Kumar, Yatender</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Mrigakshi</au><au>Singh, Akash</au><au>Kumar, Yatender</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for prediction of cardiomegaly using chest X-rays</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>19383</spage><epage>19391</epage><pages>19383-19391</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) measurement in chest X-ray scans. Cardiomegaly is a serious cardiac condition that can lead to life-threatening complications if left undiagnosed. The proposed method involves segmenting the heart from a chest CT scan using a convolutional neural network model, ResNet-18, and calculating the CT ratio, which is the ratio of the maximum width of the heart to the maximum width of the thoracic cage. Studies have shown that increasing CT ratio leads to an increasing risk of heart diseases. Hence, a need to monitor the CT ratio for every individual arises, for if the ratio changes, an alert to take precautions can be rang. The method is evaluated using a dataset of 490 chest X-ray scans, and it achieves an accuracy of 80% and a precision of 84%. The integration of CT ratio measurement in chest X-ray scan reports has the potential to aid in the early detection and diagnosis of cardiomegaly, allowing for prompt medical intervention and improving patient outcomes.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-10190-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9835-9892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2024-11, Vol.36 (31), p.19383-19391
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_3110546597
source Springer Link
subjects Artificial Intelligence
Artificial neural networks
Chest
Computational Biology/Bioinformatics
Computational Science and Engineering
Computed tomography
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Diagnosis
Heart diseases
Image Processing and Computer Vision
Medical imaging
Original Article
Probability and Statistics in Computer Science
X-rays
title Deep learning for prediction of cardiomegaly using chest X-rays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20prediction%20of%20cardiomegaly%20using%20chest%20X-rays&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Gupta,%20Mrigakshi&rft.date=2024-11-01&rft.volume=36&rft.issue=31&rft.spage=19383&rft.epage=19391&rft.pages=19383-19391&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-10190-6&rft_dat=%3Cproquest_cross%3E3110546597%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1156-f41b3545a62f63c6e843b8a922386dbd73f6e566c21e68997ad21997e9278f743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110546597&rft_id=info:pmid/&rfr_iscdi=true